
ARMore: Pushing Love Back Into Binaries

Luca Di Bartolomeo
EPFL

Hossein Moghaddas
EPFL

Mathias Payer
EPFL

Abstract
Static rewriting enables late-state code changes (e.g., to add

mitigations, to remove unnecessary code, or to instrument for
code coverage) at low overhead in security-critical environ-
ments. Most research on static rewriting has so far focused
on the x86 architecture. However, the prevalence and prolif-
eration of ARM-based devices along with a large amount of
personal data (e.g., health and sensor data) that they process
calls for efficient introspection and analysis capabilities on the
ARM platform. Addressing the unique challenges on aarch64,
we introduce ARMore, the first efficient, robust, and heuristic-
free static binary rewriter for arbitrary aarch64 binaries that
produces reassembleable assembly. The key improvements
introduced by ARMore make the recovery of indirect control
flow an option rather than a necessity. Instead of crashing, the
cost of an uncovered target only causes the small overhead
of an additional branch. ARMore can rewrite binaries from
different languages and compilers (even arbitrary hand-written
assembly), both on PIC and non-PIC code, with or without sym-
bols, including exception handling for C++ and Go binaries,
and also including binaries with mixed data and text. ARMore
is sound as it does not rely on any assumptions about the input
binary. ARMore is also efficient: it does not employ any expen-
sive dynamic translation techniques, incurring negligible over-
head (<1% in our evaluated benchmarks). Our AFL++ cov-
erage instrumentation pass enables fuzzing of closed-source
aarch64 binaries at three times the speed compared to the state-
of-the-art (AFL-QEMU), and we found 58 unique crashes in
closed-source software. ARMore is the only static rewriter
whose rewritten binaries correctly pass all SQLite3 and core-
utils test cases and autopkgtest of 97.5% Debian packages.

1 Introduction

Binary rewriting is the process of modifying an executable
without the need to recover its source code. Use cases
include, for example, the insertion of hardening measures
to mitigate the exploitation of vulnerabilities, enabling

high-performance fuzz testing of closed-source software,
profiling executables [3], or run-time patching [14]. Binary
rewriters fall into two main categories: dynamic rewriters, that
inject code into the target executable at run-time, and static
ones, that transform the binary before execution. The first class
trades speed for flexibility as any code is translated on-the-fly,
i.e., right before it is executed which results in a significant
slowdown (e.g., 3–5x for QEMU); the static approach instead
has a much smaller footprint in overhead but is only applicable
to binaries where static analysis (i.e., without feedback from
the application’s runtime behavior) is successful. Static rewrit-
ing is preferable in contexts where performance is critical (e.g.,
fuzzing) and necessary in production environments for secu-
rity. Dynamic binary rewriters generally execute the translator
in the same process as the translated program and often have
regions marked writable and executable for their just-in-time
translation, drastically increasing the attack surface.

While there is no shortage of static rewriters for the x86
architecture [10, 17–20, 34, 42–44, 49, 50], only a few support
ARM [22,23,32,47]. Counterintuitively,ARM’s fixed-size ISA
introduces new challenges. Since 64-bit pointers cannot be en-
coded in 32-bit instructions, executables must “craft” addresses
(e.g., using arithmetic expressions to build them dynamically).
Precisely detecting such dynamic pointer constructions poses a
major challenge for static rewriters. As the layout of code (and
data) may change during the instrumentation, static binary
translators must distinguish pointer types and data types and
fully recover code pointers to adjust them to the new layout.

ARM binaries rely on compressed jump tables, where for
each possible entry in the jump table, only the offset of each
case is stored (usually, only 1 or 2 bytes), making jump tables
particularly hard to statically distinguish from random data.
A static binary rewriter must detect and adjust those offsets
to accommodate the instrumentation that might change the
distance from the base case. Even state-of-the-art techniques,
such as sliced microexecution [13] or tools like, IDA Pro [4] fail
to consistently distinguish jump table data in binaries without
debug information. A static binary rewriter must detect and
adjust jump table offsets to accommodate the instrumentation



that might change the distance from the base case.
Most previously proposed solutions rely on heuristics like

pattern matching [26] or bounded data-flow analysis [47] to
follow each arithmetic operation to recover the set of possible
pointer values. Heuristics incur imprecision or translation
errors whenever they are incomplete. Another approach is to
keep the original pointers intact by inserting instrumentation
using trampolines [23] (incurring heavy performance cost)
or translating pointers on-the-fly through hashmaps [12] (but
thereby dropping support for unmodified shared libraries).

ARMore, our novel, near zero-overhead static binary
rewriter for aarch64 binaries, enables complex and efficient
instrumentation for closed-source binaries. ARMore leverages
symbolization (creating reassembleable assembly as defined
by Uroboros [43]) to reconstruct control flow after the
insertion of instrumentation.

Different from other rewriters, ARMore does not rely
on heuristics, as it only employs sound techniques. For the
recovery of pointers, we leverage layout replication, which
preserves the original address space of the binary by adding
instrumentation through a new code section, and we introduce
the rebound table, a new solution to efficiently and seamlessly
translate addresses through direct branches.

The combination of layout replication and rebound
table fundamentally changes the approach to static binary
translation. Without it, any non-translated code pointer results
in an unrecoverable (and hard to detect) fault. ARMore
ensures that, by default, any code pointer access resolves
correctly at the cost of an extra branch. This extra branch can
be removed if the pointer target is recovered and translated,
improving performance. Additionally, this technique supports
arbitrary pointer arithmetic, solving the key issue with jump
tables, similarly making jump table detection an optimization
opportunity instead of a necessity for the correct execution
of the rewritten binary. The drawback of the rebound table is
that it can only be used in binaries where the text section is
smaller than the range of a non-conditional branch (256 MB).

Another key improvement is the support of data inside text
sections. This is a major challenge for static rewriters, as deter-
mining if data at a memory address is treated as instructions or
data (or both!) is generally undecidable. If the target architec-
ture is at least ARMv8-A (with support for XOM, executable-
only memory), ARMore uses hardware assistance to reliably
detect and adjust accesses to data inside code sections.

We demonstrate ARMore’s robustness by demonstrating
that rewritten binaries preserve the original behavior. Our eval-
uation involves rewriting binaries from 239 Debian packages
(including C++ and Go binaries), and running the relevant
autopkgtest testsuite of each package, passing 97.5% tests.
We also run the complete testsuite of the SQLite3 and coreutils
rewritten binaries (passing all tests in both). We demonstrate
ARMore’s versatility through a series of instrumentation
passes: security mitigations (control-flow integrity), profiling
(AddressSanitizer), and fuzzing (coverage instrumentation).

Standard CPU benchmarks commonly used to evaluate
binary rewriters show that ARMore incurs only about 1.0%
overhead in our evaluation benchmarks. The benchmarks
include large programs such as gcc and perl and verify
the output of the rewritten programs, demonstrating that our
implementation is correct and scales well to complex COTS
binaries. ARMore includes an optional pass to enable generic
support for arbitrary stack unwinding (i.e., C++ exceptions)
that uses call emulation [50]. With call emulation enabled, the
overhead on our benchmarks is around 10%. The coverage
information instrumentation of ARMore enables fuzzing
of closed-source aarch64 binaries at high speeds (around
3 times faster than the state-of-the-art AFL-QEMU). We
used this pass to fuzz the Nvidia CUDA toolkit, unveiling
58 unique crashes. Finally, to show the performance of our
zero-cost instrumentation, we implement an AddressSanitizer
instrumentation pass similar to the one presented by Dinesh
et al. [19]. Our implementation of AddressSanitizer is only
26% slower than the original source-based version, and almost
an order of magnitude faster when compared to a dynamic
instrumentation approach (Valgrind’s memcheck).

Our core contributions are:

• A new and heuristic-free approach of instrumenting
aarch64 binaries containing arbitrary pointer arithmetic
or data interleaved with code.

• A new mechanism, the rebound table, to recover from
statically-unresolvable indirect control-flow transitions
leveraging our insights for fixed-size ISAs.

• Safe-fallback mechanisms that enable sound (but not
necessarily complete) optimization passes.

• The development of a fully-precise efficient
aarch64 static binary rewriter that scales to
large COTS binaries with support for arbitrarily
large instrumentation. ARMore is open-source at
https://github.com/hexhive/retrowrite

• A systematic evaluation of the performance overhead of
the above instrumentation passes, along with a discussion
of the limitations and real-world applications.

2 Background

2.1 Dynamic Instrumentation
Dynamic binary rewriters modify and instrument the code
of the target at runtime. The target binary is executed in a
controlled environment side by side with the rewriter engine,
which patches instructions and fixes references on-the-fly.
The rewriter engine may leverage operating system primitives
(ptrace) to control target execution. For performance, the
rewriter engine typically leverages its own instrumentation

https://github.com/hexhive/retrowrite


runtime (e.g., Dynamo [11]) or implements a full featured
virtual machine (e.g., STRATA [40]).

Dynamic approaches probe into the execution state of the
running process to gather information such as the execution
path and the contents of registers. Such information can
help rewrite some of the more complex mechanisms (e.g.,
indirect branches), but comes at a performance cost [29, 36].
Dynamic instrumentation is—without mitigation—unfit for
security-critical environments, as it increases the number of
dependencies of a binary and creates additional attack surface
(e.g., through mapped read-write-execute sections that are
required for efficient instrumentation).

2.2 Static Instrumentation
Static rewriters process the target binary before execution, and
produce a new binary after processing all instrumentation that
adds, removes, or modifies code. The overhead introduced is
low, and execution speeds are comparable to compile-time
instrumentation [19].

One of the main challenges for static instrumentation
is resolving pointer targets. Due to aliasing, the target for
references is unknown during translation. Without runtime
information, static rewriters need to rely on complex static
analysis, which is inherently imprecise and often resorts
to heuristics. Consequently, static rewriting cannot support
packed binaries or self-modifying code. However, since they
insert instrumentation before the target execution, they can
leverage more advanced and computationally expensive strate-
gies to insert instrumentation (e.g., value set analysis [15]).

2.3 Static Binary Rewriting Techniques
Briefly summarized, the following are most prominent
techniques that rewriters use are the following:

Trampolines: At every instrumentation point, the rewriter
replaces the corresponding instruction with a branch that
redirects execution to the instrumentation. This is one of
the simplest methods, but it causes substantial performance
overhead due to the cost of two extra branches for each
instrumented instruction.

Direct: At each instrumentation point, code is either
overwritten or shifted to make space for the instrumentation.

Lifting: All code in the binary is lifted to a “high level”
Intermediate Representation (IR) language similar to the one
used in compilers. The instrumentation is applied to the IR
which is finally compiled to a new executable. Symbolization:
Binary code is translated into reassemblable assembly text files.
Uroboros [43] introduced and Ramblr [42]/RetroWrite [19]
refined this technique. Symbolization transforms all refer-
enced constants in the executable (both in the code and data
sections, including relative branches) to assembly labels, so
that pointers and control flow resolve correctly even after
weaving new instructions into the code. After symbolization,

many existing tools can be applied to insert instrumentation
or analyze the symbolized assembly.

A more comprehensive study of all the different techniques
can be found in a recent survey about binary rewriting by
Wenzl et al. [46].

2.4 ARM Pointer Construction

Due to the 4-byte wide fixed size ISA, a single aarch64
instruction cannot encode a full pointer (e.g., on 64-bit Linux,
each pointer is encoded as 64-bit type with 48-bit actively
used). One approach to solve this discrepancy is to use literal
pools. Namely, storing pointers as data at compile time and
loading them into a register using a PC-relative ldr instruction.
However, this adds the cost of a memory operation each time
a pointer needs to be loaded into a register.

The alternative relies on building a pointer at runtime in
two or more instructions, through a mechanism we refer to
as pointer construction from now on. A PC-relative pointer
construction starts with an adrp, which loads the address of a
page into a register (with a granularity of 4KB and a maximum
range of 4GB relative from the PC).

Basic arithmetic operations such as add or sub set the last
12 bits of an address (the offset inside a 4KB page), but there is
no particular rule that compilers follow. Statically recovering
pointer constructions can be challenging, as compiler optimiza-
tions may mix and spread pointer constructions (especially
when multiple pointers are built simultaneously). Listing 1,
Listing 2, and Listing 3 show some examples of how a compiler
could optimize pointer constructions. Existing aarch64 static
rewriters (e.g., Egalito [47], ICFGP [32], Ddisasm [22])
exclusively rely on data flow to recover pointers. Although it
may work on an extensive range of binaries, it is inherently im-
precise and cannot cover all edge cases of real-world binaries.

adrp x0, 0xab0000
add x1, x0, 0x100 ; built pointer 0xab100
ldr x2, [x0, 0x200] ; built pointer 0xab200
add x0, x0, 0x80 ; built pointer 0xab080

Listing 1: Multiple pointers built from one adrp instruction.

adrp x0, 0xab0000
mov x1, x0
add x1, x1, 0x100 ; built pointer 0xab0100

Listing 2: Changing register during pointer construction.

adrp x0, 0xab0000
str x0, [sp, -16]...ldr x3, [sp, 16]
add x3, x3, 0x200 ; built pointer 0xab200

Listing 3: Base page register stack saving.



2.5 ARM Executable-Only Pages

Execute-only memory (XOM) is a firmware protection
technique available since ARMv8.1 with the goal of stopping
a potentially malicious third party from reverse engineering
binary blobs or scanning for ROP gadgets. When a particular
page of memory is protected with XOM, its permission bits
only show as executable (–x) and that page is readable only
through instruction fetches.

Such memory protection was added to mainstream Linux
in 2016 [30] but later removed in 2020 [31] due to it being
vulnerable to PAN (Privileged Access Never) bypass. Support
for XOM in Linux was later restored in 2021 [33], since the
hardware bug was fixed in ARMv8.7 with the introduction
of EPAN (Enhanced Privileged Access Never).

3 Challenges and Key Insights

To design a static binary rewriter, several challenges must be
addressed, which we review along with our survey of previous
work. We order the challenges by their importance for a robust
and correct rewriting engine, and highlight the insights and
trade-offs made in the development of ARMore.

3.1 Challenges

C1) Static pointer detection: Binaries often contain hard-
coded addresses (e.g., in data sections) that are used to access
global variables, imports, and functions. Those addresses
need to be detected and relocated to preserve correctness. Due
to the lack of syntactic difference between a pointer and an
integer, distinguishing references from scalars is undecidable
in general [25].

C2) Pointer construction detection: On aarch64, compil-
ers dynamically build most references through a series of at
least two arithmetic instructions. Identifying those instructions
is fundamental for the correctness of the rewriting process,
as data accesses and indirect control-flow transfers frequently
use dynamically computed addresses. Static rewriters struggle
to reconstruct pointers since the analysis required to accurately
emulate the arithmetic operations to rebuild the final value
of the pointer becomes prohibitively complicated in large
functions. For this reason, static translators often need to fall
back to error-prone heuristics.

C3) Relative offsets and jump tables (Symbol-Symbol):
Compilers use jump tables to implement switches or optimize a
series of conditional branches. While normally jump tables are
composed of a sequence of static addresses, sometimes they are
a list of 1 or 2-byte offsets from the jump table’s base case. Like
for C1, precisely differentiating those offsets from random data
is undecidable. Locating the sequence of offsets in memory
is not sufficient: static rewriters must also infer the maximum
number of cases supported by a given jump table to determine

the length of the jump table. Typically, to detect jump table tar-
gets, rewriters assume that compilers leverage a particular set
of patterns to access jump tables and look for those in the code
sections; however, this may result in incomplete coverage and
runtime errors. Even advanced analysis techniques (e.g., sliced
microexecution [13]) and state-of-the-art static analysis tools
(e.g., IDA Pro [4]) cannot recover all jump tables correctly [13].

C4) (Non) Position-independent binaries: Position-
independent executables ease some of the challenges of static
analysis due to the presence of relocations that mark code
pointers. The absence of full relocation information in non-PIE
binaries makes code pointer detection challenging, and this is
why many rewriters do not support non-PIE binaries [19, 47].

C5) Stripped binaries: The lack of defined function bound-
aries in stripped binaries complicates the disassembly. Stan-
dard disassembly techniques are not reliable enough, and this
calls for more advanced techniques to support stripped binaries.

C6) Data mixed with code: Previous studies showed that
on x86 distinguishing data from code is generally undecid-
able [45] as the static analysis must determine that a location
can never be decoded as an instruction by fully recovering
all possible control flows that could reach this location. Con-
versely, the same logic applies to aarch64. While data inside
the text section is rare in x86 (only used in heavily optimized
handwritten assembly and the now rarely used Intel C com-
piler), it is common on aarch64 due to compilers making use of
literal pools. With a few exceptions [12], most static rewriters
do not support binaries that embed data inside their text sec-
tions; they instead rely on broad heuristics that work on most
binaries but do not guarantee correctness (e.g., pattern-based
function boundary detection, incomplete data-flow analysis).

C7) Stack-unwinding control-flow mechanisms (C++,
Go): C++ exceptions unwind the stack and, for each frame,
determine the correct exception handling routine by checking
the value of the return address. Supporting exception handling
is a major challenge for static rewriters, as parsing the DWARF
metadata for stack unwinding and Language-Specific Data
Area (LSDA) exception tables requires covering numerous
edge cases with high engineering complexity. Similarly, Go’s
garbage collection routines traverse stack frames and need
special handling to be supported.

C8) Function pointers passed to external libraries
(callbacks): Binaries might call external libraries with func-
tion pointers in the arguments as callbacks. Rewriters must
correctly detect such pointer construction and rewrite those
pointers accordingly so that the (potentially unmodified) target
library receives the intended callback function as argument.

C9) Instrumentation coverage: Rewriters must be able to
insert instrumentation at arbitrary locations in the binary. Due
to design constraints, some static rewriters cannot instrument
all instructions in an executable. For example, E9Patch [20]
cannot instrument single-byte instructions.

C10) Instrumentation size: Supporting arbitrarily large
instrumentation is challenging, as many instructions and



binary constructs have a limited range and require special
handling: on aarch64, the tbz conditional branch has only
32KB of range. Jump table offsets are often stored in multiples
of instructions (4 bytes) using a single byte, limiting the
distance from the base case to 256 instructions.

3.2 Limitations of Existing Techniques

Table 1 puts state-of-the-art tools and the aforementioned
challenges into perspective. In the following, we discuss this
summary in more detail.

E9Patch [20] makes use of various techniques to patch
instructions and inserts trampolines at each instrumentation
location. Since instructions are never moved/inserted,
this approach trivially solves almost all challenges except
two: instrumentation coverage, as some locations such as
function entries cannot always be instrumented [32] (C9), and
distinguishing data mixed with code (C6). However, it incurs
high overhead: empty instrumentation at every basic block
causes more than 100% overhead.

Multiverse [12] is the first x86 rewriter to avoid using
heuristics. Indirect control flow is rewritten by querying a
mapping table between original and new addresses at every
indirect jump. Data pointers are left unmodified since the
original sections of the binary remain in the same place as
they were. Interleaving data and code is supported by keeping
a readable-only copy of the original text. It supports C++
exceptions, but since pointers passed as callbacks to libraries
are not rewritten, Multiverse requires rewriting of libraries that
might be loaded by the binary (C8), and cannot support other
generic stack unwinding mechanisms such as Go (C7). Finally,
the frequent querying of the mapping table incurs considerable
overhead of 30–60% with empty instrumentation.

Egalito [47] is a binary recompiler that lifts binaries to a
custom IR to insert instrumentation, incurring low overhead
(∼0.5%). It supports stripped binaries but relies on heuristics
such as data-flow and pattern matching to detect jump
tables (C3), to recover pointer constructions (C2), and to
approximate function boundaries (C5). Egalito supports
neither non-PIE (C4) nor stack unwinding mechanisms as
used in C++ and Go (C7).

StochFuzz [50] is designed specifically for fuzzing
applications. It makes clever use of the stochastic nature
of fuzzing to self-correct their rewriting. It supports almost
any construct without heuristics, but it works only inside a
fuzzing environment, as there is no guarantee that incremental
rewriting will ever terminate. Since the continuous execution
of the binary is part of the rewriting process, we did not
assign a value in the "overhead" column of Table 1. The only
drawback is the use of probabilistic rules upon distinguishing
instructions from data (C6).

Repica [23] uses a technique similar to reassembly, and
relative jumps are carefully adjusted to keep control-flow
intact. Jump tables and indirect pointers are detected through

backward slicing, which is imprecise and might lead to
failures in pointer construction recovery (C2) and jump table
symbolization (C3). It also does not support non-PIE (C4) or
C++ binaries (C7).

Incremental CFG patching [32] is based on Dyninst [14],
and relies on using trampolines to relocate functions to an
instrumented area with low overhead. ICFGP employs failure
analysis modes to prevent crashes in the case of an undetected
jump table (C3) by not allowing to instrument the function
that contains the misdetection. However, this leads to lower
instrumentation coverage (C9) since not all functions can be
instrumented. Pointer construction detection is still based on
heuristics and may lead to crashes (C2). ICFGP is one of the
few tools that support C++ and Go binaries (C7). It uses a
custom implementation of libunwind and of the Go runtime
that adjusts pointers on the stack, avoiding having to deal with
DWARF, but with the drawback of having to manually adapt un-
winding instrumentation to support new unwinding runtimes.

Ddisasm [22] uses the reassembly technique and relies
on a large set of reassembly heuristics to detect jump table
constructs and similar patterns. These heuristics have inherent
uncertainty and may fail in C2 and C3 (as we noticed in our
evaluation). Ddisasm supports C++ exception rewriting, but
not other stack unwinding mechanisms such as Go (C7) [39].
Furthermore, Ddisasm may also fail C10, since it cannot
expand the range of a jump table; in the case of a single-byte
range jump table, this can prove to be a very limiting restriction.

3.3 Our Technique

After enumerating and discussing the above challenges, we
introduce ARMore. Previous approaches relied on either
imprecise techniques (e.g., data flow) or precise but expensive
ones (e.g., dynamic translation, trampolines).

Our key insight is the following: given that all pointer
arithmetic must begin by either an adrp/adr, we can leverage a
combination of two techniques (layout replication and rebound
table), to rewrite all pointer arithmetic (including pointer
constructions (C2), jump tables (C3) and callbacks (C8)) by
rewriting only the first instruction (adrp/adr). With hardware
support, we detect loads to data inside text (C6). As a result,
ARMore does not rely on any expensive dynamic translation
or imprecise data-flow techniques.

First, we delineate the layout replication and rebound table
techniques. Then, we explain how ARMore leverages them to
address pointer-related challenges (C1, C2, C3, C8). Finally,
we illustrate our approach to solve the rest of the challenges,
thereby enabling support for arbitrary binary rewriting with
arbitrary instrumentation for aarch64.

3.3.3 Layout Replication

ARMore enforces the original virtual address space layout of
the binary. The idea of fixing objects in memory was intro-



Table 1: Comparison of recent static binary rewriters based on: C1) No-heuristics static pointer detection C2) No-heuristics
pointer construction detection C3) No-heuristics jump tables C4) Full PIE/No-PIE support C5) Stripped binaries support
C6) No-heuristics Mixed data/code C7) Stack unwinding (C++, Go) C8) External libraries C9) Full instrum. coverage
C10) Unlimited instrum. size Fast) Negligible overhead (0-3%) SB) Stand-alone binary

Ptr Arith. Lack of metadata Instrum.
Technique Fast SB C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Archs

RetroWrite [19] symbolization x64
Repica [23] symbolization aarch64
Egalito [47] IR lifting aarch64, x64
DDisasm [22] symbolization ∗

1 aarch64, x64
ICFGP [32] trampolines aarch64, x64, ppc
StochFuzz [50] stoch. rewriting N/A3 x64
E9Patch [20] trampolines x64
Multiverse [12] recompilation ∗

1
∗

2 x64
ARMore symbolization ∗

4 aarch64
1 : Support for C++, but not Go or other unwinding mechanisms.
2 : Requires rewriting of all libraries loaded by the binary.
3 : Rewriting may never terminate; use-case is exclusively fuzzing.
4 : Up to 256MB of text section

duced by SecondWrite [10] and is also used in Multiverse [12].
In this way, data pointers do not need to be rewritten, as they
point to the same data after rewriting. Only code pointers need
to be corrected to point to the new section that contains the
instrumentation. To avoid using heuristics, Multiverse relies on
instrumenting every indirect call with a lookup to a hashmap
that would translate the original address to the instrumented
one. This approach addresses multiple important challenges
(C1, C2, C3, C4, C5, C6); however, it has two drawbacks: (1) It
introduces prohibitive overhead (30-60%), and (2) Pointer call-
backs passed to external libraries are not translated (C8). Multi-
verse solves the callback problem by rewriting all libraries that
the binary might load, thereby inducing even more overhead.

Instead of using a hashmap to rewrite code pointers,
ARMore avoids this unnecessary overhead. The core differ-
ence lies in how ARMore handles the original .text section:
Multiverse changes its permissions to read-only to preserve it
as data; ARMore substitutes it with the rebound table section.
Another copy of the .text is kept read-only for supporting
data interleaved with code (more details in Section 3.3.3).
Figure 1 illustrates an example of ARMore’s layout replication.

3.3.3 Rebound Table

Static rewriting approaches cannot universally reliably
resolve indirect control-flow transfers. An undetected
pointer construction points to its original address in the
original code section. As a result, a recovery mechanism is
needed. However, previous approaches follow the classic
idea of replacing the code section with expensive trap-based
trampolines [35, 37, 50], which introduce noticeable overhead.

On the contrary, a major insight of ARMore exploits
the fixed size ISA of aarch64 by establishing a one-to-one

Original binary

.bss

.data

.rodata

.got

.text

.old_bss

Rewritten binary

.old_data

.old_rodata

.old_got

.rebound_table

...

.old_text

...

.new_bss

.new_data

.new_rodata

.new_got

.text(instrumented)

Figure 1: Layout replication: the left side shows the sections
of the original binary. The right side shows the section layout
of the rewritten binary.

mapping from each original instruction to its counterpart in the
instrumented section. In a fixed-size ISA such as aarch64, it
becomes ingeniously feasible to overwrite each instruction in
the code section without worrying about imprecise disassem-
bly. In addition, control flow never ends up in the middle of an
instruction, since the program counter must always be 4-byte
aligned. Instead of overwriting the code with trap instructions,
ARMore leverages direct branches whose destination in the
instrumented code section is already known at link-time.
Consequently, an undetected pointer construction always
ends up in the rebound table from where the control flow is
redirected to the corresponding target instruction. Algorithm 1
illustrates and Section 4.1 details ARMore’s approach to
reflow pointer constructions to target the rebound table.



400: adrp x0,

.text

0xf00
404: add x0, x0, 3
408: ldrb w1, [x0, w1, uxtw]
40c: adr x0, 0x418
410: add x0, x0, w1, sxtb 2
414: br x0
418: movz x0, 1 ;case 0,1
41c: ret
420: movz x0, 10 ;case 2
424: ret
428: movz x0, 100 ;case 3
42c: ret

f03: .byte 0

.rodata

;case 0
f04: .byte 0 ;case 1
f05: .byte 2 ;case 2
f06: .byte 4 ;case 3

.L400: adrp x0,

.instrumented_text

.Lf00
.L404: add x0, x0, 3
.L408: ldrb w1, [x0, w1, uxtw]
.L40c: ;adr x0, 0x418

+ adrp x0, x0, 0x400
+ add x0, x0, 18

.L410: add x0, x0, w1, sxtb 2

.L414: br x0

.L418: movz x0, 1 ; case 0,1
+ add x0, x0, 1

.L41c: ret

.L420: movz x0, 10 ; case 2
+ add x0, x0, 1

.L424: ret

.L428: movz x0, 100 ; case 3
+ add x0, x0, 1

.L42c: ret

.Lf03: .byte 0

.old_rodata

.Lf04: .byte 0

.Lf05: .byte 2

.Lf06: .byte 4

400: b

.text
(rebound table)

.L400
404: b .L404
408: b .L408
40c: b .L40c
410: b .L410
414: b .L414
418: b .L418
41c: b .L41c
420: b .L420
424: b .L424
428: b .L428

base case
x0

x0 + [w1]

w11
2

3

4

5

1
2
3

4

5

x0
base case

w1

x0 + [w1]

original binary after rewriting

Figure 2: This jump table example demonstrates the on-the-fly translation functionality of the rebound table. On the left, the
original code of the binary. On the right, the binary after rewriting. Instrumentation is inserted during symbolization (the green
instructions). The adr at 40c is substituted with a pointer construction to the rebound table, and the offsets in .old_rodata
remain valid as the indirect jump goes through the rebound table.

Figure 2 shows how the rebound table recovers an indirect
control flow transfer (in this case, a jump table). In the figure,
register w1 contains the index number of the case of the jump
table (in this example, case number three). The first two
instructions of the jump table (step 1 ) build a pointer to the
.rodata section where the offsets for each case is stored.
During rewriting, the first adrp instruction is adjusted to point
to the replicated layout (specifically, to .old_rodata, as
shown in Figure 1). Then, the correct offset is fetched at step
2 using register w1 as the “case number” of the jump table. In

step 3 , the program builds a pointer to the jump table base case
(where offsets are calculated from) and stores it in x0. A single
adr instruction is sufficient since the pointer to be built is close
to the program counter. During rewriting, the adrwill be con-
verted to an adrp+add pointer construction to be able to target
the replicated layout (instead of the original text, it will now
point to the rebound table, as shown in Figure 1). At step 4 ,
the relative offset is added to the base case to obtain the address
of the intended case of the jump table (case 3 in the example).
After this step, register x0will point to 0x428 both before and
after rewriting. In the rewritten binary, address 0x428 is inside
the rebound table. It points to a branch to a label corresponding
to the third case of the jump table (.L428). Finally, after an
indirect branch, at step 5 control flow correctly reaches the
third case in both the original and the rewritten binary.

In other words, the rebound table implicitly translates
addresses on-the-fly, conceptionally similar to many other
binary rewriters that use hashmaps [12, 16, 44, 49]. On the
other hand, ARMore’s rebound table translation comes at the
cost of only one additional branch, instead of an expensive
lookup through a dynamic structure. Furthermore, the rebound
table allows the insertion of unlimited instrumentation (C10)
everywhere in the code (C9). The range of jump table entries

Algorithm 1: Pointer construction rewriting
Input: Disassembly listing dis of the code section
Output: Disassembly outdis in which built pointers target the replicated layout

1 outdis←{ };
2 foreach instruction ins∈dis do
3 if ins.opcode == adr then
4 reg← ins.operand[0];
5 mem← ins.operand[1];
6 page←mem & 0xfffffffffffff000;
7 if mem ∈ .text then
8 page←rebound_table_start + (page − text_start);

9 outdis←outdis ∪ [”adrp reg, page”];
10 outdis←outdis ∪ [”add reg, reg, :lo12:mem”];

11 else if ins.opcode == adrp then
12 reg← ins.operand[0];
13 page← ins.operand[1];
14 if page ∈ .text then
15 page←rebound_table_start + (page − text_start);

16 outdis←outdis ∪ [”adrp reg, page”];

17 else
18 outdis←outdis ∪ [ins];

is not a concern since jump table offsets are relative to the
rebound table, where the original layout is preserved (i.e., the
distance between jump table cases remains the same).

Due to the rebound table containing a branch for every in-
struction of the code section, the size of the text of the binary is
tripled, affecting both disk usage and memory usage at runtime.

3.3.3 Pointer Arithmetic

Pointer construction comes in two forms: PC-relative (for PIE
binaries) or static (non-PIE). Due to the combination of layout
replication and rebound table, ARMore supports non-PIE
static pointers out of the box (including any arithmetic per-
formed over them), as they always target the replicated layout,



where relative offsets are preserved even after instrumentation
is inserted.

For PC-relative pointer constructions, ARMore forces
dynamically computed pointers to target the replicated layout
by symbolizing the initial adrp/adr—the prologue of a
pointer construction—to point it to the same address on the
replicated layout. The remaining instructions that fix the last
12 bits of a pointer remain untouched. All future calculations
on that pointer are then referring to the replicated layout. It
is important to note that adrpmust precede each PC-relative
pointer construction (see Appendix C).

This new way of dealing with dynamic pointer constructions
is simple yet powerful: ARMore just needs to symbolize adrp
instructions to correctly handle all pointers. As shown in our
evaluation, previous aarch64 rewriters were limited by the
complexity and imprecision of trying to emulate arithmetic
operations to recover pointers (e.g., through dataflow).

This allows ARMore to support arbitrary pointer arithmetic,
including static pointers (C1), pointer constructions (C2), and
jump tables (C3). Even callbacks passed to libraries work as
expected since they are translated through the rebound table
after being dereferenced (C8).

3.3.3 Call Emulation

Despite having layout replication, all the code that ARMore
produces is at a different location than the old .text (which
is substituted by the rebound table). Return addresses on the
stack refer to the instrumented part.

Call emulation is a widely used technique by rewriters in the
past to preserve the correct return addresses [50]. It substitutes
every bl and blr call instructions with a adr+mov+b sequence
that puts the original return address in the link register (which,
in our case, now points to the rebound table) and then uses a di-
rect branch to a function instead of a call. This technique is safe;
however, it has been often criticized for introducing noticeable
overhead. We note that contrary to other static rewriters that use
call emulation, ARMore does not need to instrument any ret
instruction to re-adjust the return address, as the rebound table
seamlessly translates it. In our evaluation, we record that using
call emulation incurs 10.74% additional overhead. As men-
tioned in Section 3.4, while call emulation is enabled by default,
disabling it is a reasonable optimization in most instances.

3.3.3 C++ and Go: Stack unwinding

To support C++’s exception handling (C7), we design two
techniques. One is to re-use call emulation: by storing original
return addresses on the stack,C++ exception metadata does not
need to be updated. The alternative instead parses and rewrites
the LSDA table entries that describe exception handling infor-
mation. This second method does not introduce call emulation
overhead but, as highlighted by previous work [32], it may be

prone to error due to the variety and complexity of DWARF en-
codings. The user is free to choose between the two techniques.

To support Go garbage collection routines, ARMore uses
call emulation. To avoid the call emulation overhead, some
engineering effort is required to parse and rewrite Go’s stack
unwinding information.

3.3.3 Data Mixed With Text

Related work keeps a readable-only copy of the original text
sections at the original virtual address [10,12,44,49] to support
interleaved data and code. As ARMore places the rebound
table at the address of the original text section, it cannot rely
on this approach. We instead introduce an alternative approach
that leverages XOM (executable-only pages, available from
ARMv8.1), reintroduced in the Linux kernel as of 2021 [33]
With XOM, pages marked as executable-only (–x) are
exclusively readable for instruction fetches. We mark the
rebound table as executable-only, and whenever the program
tries to access data inside the text region, the fetch will trigger
a segmentation fault. ARMore catches the segfault through
a signal handler. The handler returns the correct value by
reading it from a copy of the original text section (.old_text
in Figure 1). Assuming that data inside text is rare, this
approach introduces low overhead even if the overhead per
access is relatively high due to the involved trap.

3.3.3 Stripped and PIE/non-PIE Binaries

While rewriting non-PIE binaries is a challenge for other
rewriters [19, 47], ARMore does not need to detect pointers
and supports both PIC and non-PIC code through layout
replication (C4).

Thanks to the fixed-size ISA, it suffices to linearly disassem-
ble all the code sections to rewrite stripped binaries without
heuristics. Since ARMore does not depend on function bound-
ary detection, no particular technique is required to address C5.

3.4 Heuristics as an Opportunity

Another advantage of our approach is that the rebound table
introduces an opportunity for sound (but not necessarily
complete) optimizations. Any code pointer that can be
correctly recovered through data-flow analysis can be adjusted
to point to the translated code section. The rebound table
serves as a catch-all fallback that adds very low overhead in the
case a pointer escapes detection. The key difference to prior
approaches is that the price of a missed pointer construction
is not a terminal fault but simply the cost of going through
an additional branch: imprecision is no longer a correctness
issue, but a tiny performance hit.

One of the heuristics we implemented data-flow analysis
to detect common jump table patterns. We update the pointer
to the base case and the offsets that store the distance from the



base case in .rodata to avoid the extra branch through the
rebound table. Figure C.1 illustrates an example of a jump table
that needs to be rewritten because of instrumentation inserted
between its cases (in green). The example shows how the cost
of failing to detect the jump table is just an additional jump
instruction instead of a crash like in other binary rewriters.

Another possible optimization pass is to disable call
emulation for functions that do not use alternative ways
of reading the program counter (see Appendix C). Note
that for binaries generated by well-behaved compilers, this
optimization is sound for all functions.

4 Implementation

ARMore forks RetroWrite [19] and adds about 3,000 lines
of Python code to implement the rebound table and layout
replication techniques, along with support for C++ binaries,
Go binaries, stripped binaries, data inside text, non-PIE
binaries, and aarch64-specific pointer analyses.

RetroWrite provides a reasonable baseline for reassembly
and we reuse the existing structure and glue code to parse
ELF information. The code depends only on the libraries
archinfo, elftools, and capstone.

4.1 Fixing the Address Space
To exactly replicate the layout of the original binary, ARMore
requires precise placement of the individual ELF sections.
Our process creates scripts that leverage ld’s command line
flags such as –section-start to specify for each section the
virtual address it must be placed at. Some of the sections are
renamed (e.g., from “.got” to “.old_got”), to avoid some
linker-internal heuristics that would move or modify them. In
addition, we create stubs for these renamed sections to refer
to new functionality. For example, using the AddressSanitizer
instrumentation pass requires additional imports to be stored
in the .got section. By using the name .old_got the linker
adds the imports in the new .got stub, without modifying
the replicated .old_got. The old sections have the same
permissions and behavior as their respective originals.

Hardcoded pointers (e.g., literal pools, .got entries) in
non-PIE binaries do not need to be symbolized, as they
will already refer to the copied sections (e.g., .old_got).
Hardcoded pointers in PIE binaries instead need to be
symbolized. Notably, each pointer in a position-independent
executable is accompanied by a corresponding relocation.
ARMore parses relocation information in a binary and
emulates the behavior of a dynamic loader when applying
relocation rules, replacing pointers with assembly labels that
point into the replicated layout. Instead, to force dynamically
computed PC-relative pointers to target the replicated layout,
Algorithm 1 illustrates our approach. ARMore symbolizes the
initial adrp—the prologue of a pointer construction—to make
it point to the same address in the replicated layout. The rest

of the instructions that fix the last 12 bits of a pointer remain
untouched since offsets are preserved on the replicated layout.
Similarly, each adr instruction is substituted with a symbolized
adrp+add pointer construction, since the replicated layout is
usually out of the ± 1 MB range of the adr instruction. Given
that on aarch64 PC-relative pointers are built either through an
adrp pointer construction or through a simple adr instruction,
every single dynamically computed PC-relative pointer is
symbolized correctly, including jump tables and callbacks.

The rebound table leverages a linear sequence of aarch64
branch instructions, each of which redirects to the correspond-
ing translated address in the new instrumented code section.
Figure C.1 provides an example for a rebound table in the
output of ARMore.

4.2 Support of Data Mixed With Text

Since the linker does not allow to define sections as
executable-only through the assembly directive .section
.rebound_table, "x", ARMore makes the text sections
executable-only by instrumenting _start with a call to
mprotect. A call to the sigaction later registers the
segmentation fault handler. The handler takes care of catching
loads to executable-only regions, reading the relevant correct
value from .old_text, and restoring the execution context
as if the load never triggered a memory violation. Finally,
ARMore installs seccomp filters to prevent the application
from registering and overwriting our signal handler; ARMore
keeps track of user-registered segfault handlers and calls them
accordingly from its own handler.

4.3 Instrumentation Passes

When inserting instrumentation, ARMore uses any free
registers and spills occupied ones onto the stack. To determine
the set of free registers at any point in the binary, we perform
a sound over-approximative live registers analysis. The
following instrumentation passes are currently implemented
in ARMore:

Coverage Information: this pass adds AFL-compatible
instrumentation at every basic block location, in a similar
manner to what afl-gcc [6] does on source code. We also
provide an AFL++ [21] style forkserver implementation to
avoid the overhead of an exec syscall for each run.

Control-Flow Integrity (CFI) [9]: protects the program
against control flow hijacking by checking the runtime target
of indirect function calls. ARMore’s CFI instrumentation pass
protects forward edges by restricting indirect call targets to
function entries. Furthermore, backward edges are checked
by leveraging ARMv8-A pointer authentication to implement
a safe version of stack canaries as proposed by Liljestrand et
al. [28]. Our instrumentation marks the function beginnings
and relies on a set of function addresses in the binary which is



either extracted from the ELF symbol table or can be provided
through an external analysis that detects function headers.

AddressSanitizer: The ASan instrumentation pass is similar
to the original ASan compiler pass [41]. RetroWrite [19]
similarly implements a retrofitted binary ASan pass. We adjust
the pass for aarch64 and enable compatibility with already
pre-instrumented libraries. ASan is a perfect candidate to test
the speed and scalability of ARMore due to the instrumentation
pass’ size and complexity. Binary ASan instruments every
memory operation checking if the target address is poisoned
(except for stack and global variable accesses, due to the lack
of bounds information without source code).

It is important to note that, due to the presence of limited-
range short jumps in aarch64 (e.g., cbz, tbz), ARMore sub-
stitutes them with longer jumps if it detects that the amount of
instrumentation inserted would make their target out of reach.

5 Evaluation

The evaluation is aimed at answering the following three
high-level questions about ARMore:

• Q1: Does it preserve the original behavior of binaries?
(correctness)

• Q2: Does it scale to real-world, complex targets?
(robustness)

• Q3: Is the instrumentation overhead of ARMore
competitive with source-based instrumentation passes?
(performance)

To address the above questions, we compare ARMore on
SPEC CPU2017 in different configurations, we rewrite 239
Debian packages, run rewritten SQLite and coreutils binaries
through their respective large test suites, study ASan and
coverage instrumentation, fuzz real world software finding
58 bugs (from 90 crashes), and leverage ARMore to hot patch
buggy applications. In total, we rewrite 486MB of code adding
up to over 121 million instructions.

Our benchmark machine is a 2.4 GHz APM X-GENE
A57 with 64GB of DDR3 memory and a Micron M500 M.2
disk, provided by the Cloudlab (https://cloudlab.us/)
academic datacenter. For the fuzzing experiment, we used a
Macbook Air M1 running an Ubuntu 20.04 virtual machine.

5.1 SQLite, Coreutils, Debian (Q1, Q2)
To estimate the correctness of ARMore, we leverage two
extensive test suites of open-source projects (SQLite and
Coreutils). To establish the robustness, we download and
rewrite a multitude of real-world binaries from the Debian
repositories, running their relevant autopkgtest. For both of
those benchmarks, we symbolize and reassemble the binaries
without inserting instrumentation, with call emulation enabled.

5.1.1 Open Source Test Suites

We use the SQLite test suite (which has 100% branch
coverage [5]) and the coreutils test suite. The two test suites
combined use more than 30 binaries and run a total of over
two million extensive different tests. Rewritten binaries by
ARMore passed all tests in both test suites.

5.1.1 Debian Packages

Many Debian packages include an autopkgtest feature
through which package maintainers can verify that package
binaries are built correctly and they pass the testsuite that
comes with their source code. We decided to test ARMore’s
robustness by running those testsuites against the rewritten
version of said binaries (with empty instrumentation).

Our evaluation harness automatically downloads and
extracts deb packages, rewrites the relevant binaries, and runs
the included testsuite with autopkgtest. We let the script run
for 24 hours. We found out that the vast majority of packages
do not contain tests: of the over 10,000 packages downloaded,
all but 239 packages had to be skipped due to lack of tests,
missing binaries, or outdated dependencies. Out of the 239
testsuites that were run, 232 passed correctly all tests, six of
them failed to link due to unmet/outdated dependencies and
one failed to rewrite. We manually inspected the reason for
the failure in rewriting, and we found that the problem was
caused by one of ARMore’s dependencies (PyElfTools) that
crashed because of an unsupported DWARF instruction.

Out of the 232 packages that passed all tests, 76 were in C,
45 were in Go, 18 were in C++, one in D, one in Fortran, one
in Lua, and one in Ocaml. We determined the language they
were implemented in by looking at the implemented-in and
Built-Using tags in the control file of each package. The
remaining 89 packages that passed did not have such tags. We
manually inspected some of them and determined that the vast
majority of the untagged packages are in C/C++.

In summary, 6 failures out of 233 testsuites gives ARMore
a 97.5% pass rate on average. We are confident that all the
failures are due to implementation bugs in our prototype of
ARMore and could be fixed with some engineering effort.

A similar evaluation was conducted by Egalito (although
limited to C/C++ packages). Their reported accuracy was
82.6%, i.e., 19 failures out of 109 [47].

5.2 Reassembly: SPEC CPU2017 (Q1, Q3)
The SPEC CPU2017 test suite is a common compiler bench-
mark that consists of a variety of diverse reasonably large appli-
cations. SPEC CPU2017 self-verifies its results to ensure cor-
rect computation. Our system runs Ubuntu 18.04 which comes
with gcc 7.5.0 by default, Appendix A details our full setup.

To measure the overhead introduced by the rebound table,
we benchmark the rewritten binaries by ARMore without
instrumentation, and compare the runtime against the original

https://cloudlab.us/


perlbench(C)
mcf(C

)
x264(C)

gcc(C
)

imagick(C)
xz(C)

namd(C)
lbm(C)

nab(C)

blender(C++)

omnetpp(C++)

roms(C++)

exchange2(C++)

fotonik3d(C++)

cam4(C++)

deepsjeng(C++)

cactuBSSN(C++)

bwaves(C++)

xalancbmk(C++)

wrf(C
++)

parest(C
++)

leela(C++)

povray(C++)

benchmark

500

1000

1500

2000

2500

3000

3500

Ru
nt

im
e 

(s
ec

on
ds

)

baseline
ARMore
ARMore call emulation

Figure 3: Benchmark runtime on SPEC CPU2017.

binaries. To be as conservative as possible and measure the
worst-case rebound table overhead, we use ARMore with
heuristic optimizations (e.g., jump table detection) turned off.

For the C++ binaries, we also measure the overhead of
enabling call emulation (because of a failure in table exception
information parsing). Notice that for C binaries, call emulation
is not necessary, so we kept it turned off.

Figure 3 shows the result of the experiment. The average
overhead introduced by the rebound table is 0.99%. The
average overhead introduced by call emulation (calculated
only on C++ binaries) is, on average, 10.74%.

The high variance of the overhead of call emulation is due to
the difference in the number of calls each benchmark performs.
To verify this, we instrument each benchmark binary to count
the number of indirect branches (br), direct calls (bl) and
indirect calls (blr) it performed during its execution, and run
the SPEC CPU2017 suite again. Table B.1 shows the totals of
those counts. Notably, C++ benchmarks that executed a high
number of calls (both direct and indirect) are most affected
by the call emulation overhead (povray, omnetpp, leela).

We conclude that ARMore introduces negligible overhead,
yet maintains correctness as the output of the binaries is
verified by the SPEC CPU2017 suite. We would like to note
that while the C++ call emulation adds considerable overhead,
it should be used only in the edge cases where exception
information recovery fails.

5.3 Case Study I: Address Sanitization
We now evaluate ARMore in how well our binary address san-
itization pass compares to source-based address sanitization.
Address sanitization is a prime example of a heavy-weight
pass that requires extensive instrumentation.

Similar to Section 5.2 we benchmark this pass on the
SPEC CPU2017 binaries, comparing the results to a dynamic
rewriter (Valgrind’s memcheck), since we are not aware

of other ARM static rewriters supporting ASan. The base-
line for this comparison is compiler-based ASan (using the
-fsanitize=address flag). We also run the same benchmark
without the register savings optimization to measure its impact
on such a heavy-weight instrumentation pass. On average,
ARMore instrumentation pass is 26% slower than the baseline.
Without register savings, it is 60% slower than the baseline.
Meanwhile, Valgrind is almost 725% slower than the baseline.

Note that this is not a completely fair comparison, since
ARMore’s ASan and Valgrind’s memcheck instrumentation
pass cannot instrument stack allocations due to the inability to
infer the layout of stack frames. In comparison to a compiler
pass, they overestimate the number of memory operations that
need to be instrumented and result in higher register pressure.

5.4 Case Study II: Coverage Information
To evaluate the effectiveness of ARMore’s AFL-compatible
coverage instrumentation pass, we compare it with current
alternatives to fuzz aarch64 targets.

We evaluate ARMore against AFL-QEMU [48] on its
default configuration, using source-based coverage instrumen-
tation provided by the AFL++ [21] compiler as a baseline. We
used Magma [24] as our benchmark as it was the only one read-
ily available for ARM. Appendix B details our configuration.

Following established fuzzing evaluation guidelines [27],
each target was executed five times for 24 hours each. The
box plot in Figure 4 presents the throughput of the three
fuzzers: ARMore fuzzes code about 3 times faster than AFL-
QEMU, on average. Compared to AFL++ (compiler-based
instrumentation), ARMore is around 25% slower.

However, the number of executions per second alone does
not yield a complete picture, since inaccurate insertion of
instrumentation could lead to higher throughput at the cost of
fewer bugs found. For this reason, we verified that the coverage
growth of using ARMore to fuzz was similar to the other two



AFL++ AFL-QEMU ARMore
0

5

10

15

20

25

30

Ex
ec

/s

lua

AFL++ AFL-QEMU ARMore
0

200

400

600

800

1000

Ex
ec

/s

libpng

AFL++ AFL-QEMU ARMore
0

100

200

300

400

500

Ex
ec

/s

libxml2

AFL++ AFL-QEMU ARMore
0

100

200

300

400

500
Ex

ec
/s

sqlite3

AFL++ AFL-QEMU ARMore
0

100
200
300
400
500
600
700
800

Ex
ec

/s

libtiff

AFL++ AFL-QEMU ARMore
0

50

100

150

200

250

300

350

Ex
ec

/s

libsndfile

Figure 4: Executions per second over 5 runs of 24 hours on
the MAGMA fuzzing benchmark. Higher is better.

AFL-based fuzzers (AFL-QEMU and AFL++) in Figure B.1.
ARMore’s coverage information instrumentation is

evidently a viable alternative to AFL-QEMU and approaches
the performance of source-based AFL++.

5.5 Case Study III: Fuzzing Real World
Closed-source Software

To show the effectiveness of the fuzzing speed that ARMore
enables, we ran a campaign targeting real-world proprietary bi-
naries. We evaluated the Nvidia CUDA toolkit for Linux, a set
of utilities to compile, debug and inspect CUDA applications.

After 10 hours of fuzzing for each binary, we found 87
crashes in cuobjdump and three crashes in ptxas. To ensure
that our instrumentation did not cause the crashes, we verified
that each crash was reproducible on the original binary. The
flexibility of ARMore helped us discover the severity of the
bugs: by instrumenting the target binaries with ASan, we
discovered that there are 33 unique heap-buffer-overflows
and 11 unique use-after-free bugs amongst the crashes;
the remaining crashes are null pointer dereferences. By
classifying each crash by the program counter of the crash
site, we approximate that our fuzzing campaign found 58
unique disambiguated crashes. We responsibly disclosed our

Format Version Total binaries Frequency
Ubuntu Server 18.04.6 129 0%
Ubuntu Server 20.04.5 901 0.0035%
Ubuntu Server 22.04.2 748 0.0047%
Ubuntu docker 18.04.6 85 0%
Ubuntu docker 20.04.5 300 0%
Ubuntu docker 22.04.2 292 0%

Table 2: Estimated data-inside-text frequency across all
binaries in the /bin folder of stock Ubuntu distributions.

findings to the vendor and are waiting for a response from
them regarding their security implications.

5.6 Case Study IV: Binary Patching
Defenders must quickly patch exploitable bugs to stop attacks,
but the long lead times for developing, testing, and deploying
patches put defenders at a disadvantage. Binary patching
provides a fast alternative, enabling analysts to develop
stop-gap solutions by adding code directly to the binary.

However, ARMore’s symbolization enables the patching
of vulnerable ELF binaries without brittle binary editing
tools. ARMore lifts and symbolizes the binaries to rewritable
assembly code. The analyst can then locate the vulnerable code
section and develop an assembly-level patch (potentially aided
by visualization from binary analysis tools like Ghidra or IDA).
Applying the patch to symbolized code and reassembling
the binary fixes the vulnerability and mitigates exploitation.
Ultimately, the relative ease of writing assembly patches
instead of binary patches accelerates the mitigation of exploits.
In Listing B.1, we demonstrate how a few lines of added
assembly code successfully patch CVEs (CVE-2018-7584 [2]
and CVE-2014-9912 [1]) in PHP. We used the vulnerable php
binary present in the Magma fuzzing benchmark [24] to test
the patches in Figure B.1.

5.7 Frequency of Data Inside Text
As explained in Section 4.2, ARMore uses signal handlers
to catch and recover from reads to data inside code sections.
Since this is an extensive operation, we assess the frequency of
data inside text in COTS binaries. Table 2 gives a lower bound
of the data-inside-text frequency for six different Ubuntu con-
figurations. By linearly disassembling all code sections with
capstone, we count the number of invalid instructions (ex-
cluding literal pools and00000000 as it serves as padding). All
invalid instructions are classified as data inside text. Only 0.2%
of binaries contained invalid instructions in their code sections.
In total, we disassembled 44 million instructions, 0.0011%
of which were invalid. This number serves as a concrete lower
bound for the amount of data inside text sections.

However, there might still be data inside text that disassem-
bles correctly to a valid instruction. To adjust for this difference,



we calculate the chance that random data represents a valid
aarch64 instruction by disassembling all 232 possible 4-bytes
values, and the result is around 33.80%. We argue that a rough
estimate of the frequency of data inside text is p· 1q , where p is
the ratio of invalid instructions, and q is the chance of random
data being a valid instruction. Our final result for the lower-
bound estimate of data inside text sections is thus 0.0032%.

5.8 Comparison to Other Rewriters

We compare ARMore against other static aarch64 rewriters,
namely ICFG, Egalito, and Ddisasm. Section 3.2 shows a list
of features used to compare against other static reweriters.

Incremental CFG Patching [32]. We ran the SQLite test
suite and the SPEC CPU2017 benchmarks using ICFGP’s
BlockTrampoline func-ptr mode with empty instru-
mentation. Unfortunately, we could not confirm the authors’
correctness claims on aarch64. The SQlite testsuite reported
12 failed tests, and out of the 23 SPEC CPU2017 benchmarks,
only 10 finished successfully. We believe the source of the
failures is the usage of heuristics when detecting pointer
constructions (C2). The overhead introduced by ICFGP is on
par with ARMore (<2%).

Egalito and Ddisasm. Egalito and Ddisasm are the only
other static binary rewriters that claim aarch64 support. Unfor-
tunately, we believe their support of aarch64 is experimental,
or not as well-tested as their x86 support. In our tests, Egalito
could not rewrite any binaries we tried. In their paper, they
also report a low success rate (82.6%) on Debian package
autopkgtests. Ddisasm instead proved to be successful on
hand-crafted small binaries (such as "int main() {}") but
failed on any larger binary we tried. Previous work similarly
struggled to run these two translators, i.e., ICFGP failed to run
Egalito [32] and StochFuzz failed to run Ddisasm [50].

5.9 Evaluation Summary

Our evaluation demonstrates that ARMore correctly rewrites
diverse binaries (486MB of code) at minimal overhead (1.0%
for SPEC CPU2017). Its instrumentation passes (ASan, cov-
erage information) are competitive with their compiler-based
counterparts. ARMore is robust and scales to real-world,
closed-source binaries (finding 58 bugs in our fuzzing test).

Based on our extensive evaluation covering test suites, stan-
dard benchmarks, and Debian packages, we claim ARMore’s
general support for aarch64. As evaluated,no other static binary
translation engine provides similar performance and robust-
ness. We commit to submitting ARMore to the artifact evalua-
tion, fully open-sourcing it, and making Docker files and virtual
machines available for testing to provide an open environment
for efficient and effective aarch64 instrumentation.

6 Related Work

ARMore draws inspiration from diverse related static and dy-
namic binary rewriting work. In this section, we discuss the
related works that are not part of our comparison in Section 3.2.

BISTRO [17] is aimed at rewriting individual components
in an executable and works by stretching the binary to
make space for the new instrumentation. It uses trampolines
(“anchors”) to avoid breaking indirect call targets.

McSema [18] is an excellent example of an LLVM IR lifting
approach that supports x86_64 ELF and PE binaries, with C++
exceptions and aarch64 support under development. The dis-
advantages in lifting to an IR are that the lifting requires hefty
static analysis (in fact, McSema uses IDA Pro as its backend),
and some overhead might be introduced by the non-optimal
lifting of the original binary. Zafl [34] is a recent static rewriter
for x86_64 binaries. It focuses on fuzzing instrumentation and
internally uses GCC’s IR. Zafl does not employ heavy-weight
dependencies to perform its static analysis.

Uroboros [43] was the first approach utilizing reassem-
bleable assembly from x86 binaries. It suffers from the classic
challenges of static analysis, such as relying on heuristics
to differentiate between scalars and references. Ramblr [42]
significantly improved Uroboros’ approach with better
heuristics and less overhead. RetroWrite [19] restricted the
class of target binaries to position-independent ones, avoiding
the problem of distinguishing between scalars and references.

Stir [44] and BinCFI [49] rely on a mapping table similar to
dynamic binary translation approaches that keep a translation
table between the original and the new addresses. At runtime,
whenever a pointer is dereferenced, it is dynamically translated
from its original address to the new address incurring
overhead for the translation. This mapping mechanism has
two drawbacks: performance overhead (frequently querying
the mapping table for each indirect control-flow transfer, the
overhead is around 30–60% [12]); and not supporting library
callbacks. Pointers passed to external modules may be derefer-
enced without prior translation. Instrumenting libraries is the
only reliable solution but incurs even higher runtime overhead.

SecondWrite [10] lifts binaries to LLVM IR before instru-
menting and recompiling them. Like Multiverse, it keeps a copy
of the original binary mapped at its original address to support
arbitrary data pointer arithmetic. Code pointers are translated
at their point of usage through a dynamic lookup, with similar
drawbacks as other dynamic translation approaches.

RevARM [26] precisely detects jump tables on ARM32
binaries. However, on ARM32, jump tables are explicitly
marked by special ARM32 instructions. They still rely
on pattern matching to recover pointer constructions, and
their support of stripped binaries relies on the IDA Pro
disassembler. µSBS [38] is another binary rewriter for
32-bit ARM architectures that can precisely rewrite stripped
firmware by considering only THUMB binaries.



7 Discussion

To achieve sound static rewriting, some assumptions made
during the development of ARMore potentially limit its
real-world applicability.

Notably, ARMore does not support self-rewriting binaries.
Self-rewriting binaries are generally challenging to reliably
rewrite statically due to the difficulty of correctly reproducing
the self-modifying behavior. Self-rewriting binaries are mainly
used by malware to obfuscate their behavior and packers to
minimize size. These use cases are out of scope for ARMore
and may be more easily supported by dynamic binary rewriting.

ARMore is restricted to rewritten binaries with a resulting
.text size of up to 128MB. This restriction originates from
the limited range of aarch64 branch instructions, limiting
the reach from the rebound table to the corresponding
instruction in the rewritten section. In our evaluation, the only
binary suffering from this limitation was chromium, with a
(non-rewritten) .text section of 131MB.

8 Conclusion

ARMore is a fast and precise static rewriter for Linux
binaries targeting complex and challenging binaries, including
non-PIC, stripped, or C++/Go targets. We address key issues
in static rewriting on ARM, like dynamic pointer construction,
jump table detection, and data inside code sections in a safe
way. So far, these challenges either resulted in significant
overhead (e.g., expensive trampolines) or imprecision
(e.g., incomplete data-flow analysis). We introduce layout
replication and rebound tables to fundamentally solve these
challenges at complete coverage without heuristics and low
overhead (1.0% for SPEC CPU2017).

ARMore is more robust and works on a wide variety of
binaries (rewriting 486MB of code and over 121 million
instructions). We present several instrumentation passes on
top of the symbolization engine: ASan, CFI, and coverage in-
formation for fuzzing (finding 58 bugs in closed-source code).

To the best of our knowledge, ARMore is the only aarch64
rewriter that is efficient, fully precise, and supports complex
real-world software. We show that the total overhead of the
symbolization and the instrumentation passes are competitive
with compiler-based instrumentation passes. Heuristics-free
binary rewriting is not limited to the x86 architecture but is
also feasible for aarch64.

9 Acknowledgments

We our shepherd and the anonymous reviewers for their
insightful comments. This project has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program

(grant agreement No. 850868), SNSF PCEGP2_186974, and
DARPA HR001119S0089-AMP-FP-034.

References

[1] Cve-2014-9912. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2014-9912.

[2] Cve-2018-7584. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2018-7584.

[3] Dynamic instrumentation toolkit for develop-
ers, reverse-engineers, and security researchers.
https://frida.re. Accessed: 2021-01-06.

[4] Hexrays homepage. https://hex-rays.com/.
Accessed: 2021-09-10.

[5] How sqlite is tested. https://www.sqlite.org/
testing.html. Accessed: 2022-04-28.

[6] More about afl. https://afl-1.readthedocs.io/
en/latest/about_afl.html. Accessed: 2022-04-
28.

[7] Spec cpu 2017 compilation flags. https://www.
spec.org/cpu2017/flags/gcc.2018-02-16.
html#user_F-fno-strict-aliasing. Accessed:
2020-11-22.

[8] Arm reference manual: A64 general instructions in
alphabetical order. https://developer.arm.com/
documentation/dui0802/a/a64_general_alpha,
2021.

[9] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity. In Proceedings of the
12th ACM Conference on Computer and Communica-
tions Security, CCS ’05, page 340–353, New York, NY,
USA, 2005. Association for Computing Machinery.

[10] Kapil Anand, Matthew Smithson, Khaled Elwazeer,
Aparna Kotha, Jim Gruen, Nathan Giles, and Rajeev
Barua. A compiler-level intermediate representation
based binary analysis and rewriting system. In Proceed-
ings of the 8th ACM European Conference on Computer
Systems, pages 295–308, 2013.

[11] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia.
Dynamo: A transparent dynamic optimization system.
In Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation,
PLDI ’00, page 1–12, New York, NY, USA, 2000.
Association for Computing Machinery.

[12] Erick Bauman, Zhiqiang Lin, and Kevin W. Hamlen.
Superset disassembly: Statically rewriting x86 binaries
without heuristics. Proceedings 2018 Network and
Distributed System Security Symposium, 2018.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9912
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9912
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-7584
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-7584
https://frida.re
https://hex-rays.com/
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html
https://afl-1.readthedocs.io/en/latest/about_afl.html
https://afl-1.readthedocs.io/en/latest/about_afl.html
https://www.spec.org/cpu2017/flags/gcc.2018-02-16.html#user_F-fno-strict-aliasing
https://www.spec.org/cpu2017/flags/gcc.2018-02-16.html#user_F-fno-strict-aliasing
https://www.spec.org/cpu2017/flags/gcc.2018-02-16.html#user_F-fno-strict-aliasing
https://developer.arm.com/documentation/dui0802/a/a64_general_alpha
https://developer.arm.com/documentation/dui0802/a/a64_general_alpha


[13] M Ammar Ben Khadra, Dominik Stoffel, and Wolfgang
Kunz. Efficient binary-level coverage analysis. In
Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1153–1164,
2020.

[14] Bryan Buck and Jeffrey K. Hollingsworth. An api for
runtime code patching. Int. J. High Perform. Comput.
Appl., 14(4):317–329, nov 2000.

[15] Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang.
SelectiveTaint: Efficient data flow tracking with static
binary rewriting. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1665–1682, 2021.

[16] Amanieu D’Antras, Cosmin Gorgovan, Jim Garside, and
Mikel Luján. Low overhead dynamic binary translation
on arm. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI 2017, page 333–346, New York,
NY, USA, 2017. Association for Computing Machinery.

[17] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. Bistro:
Binary component extraction and embedding for
software security applications. In European Symposium
on Research in Computer Security, pages 200–218.
Springer, 2013.

[18] Artem Dinaburg and Andrew Ruef. Mcsema: Static
translation of x86 instructions to llvm. In ReCon 2014
Conference, Montreal, Canada, 2014.

[19] Sushant Dinesh, Nathan Burow, Dongyan Xu, and
Mathias Payer. Retrowrite: Statically instrumenting
cots binaries for fuzzing and sanitization. In 2020
IEEE Symposium on Security and Privacy (SP), pages
1497–1511, May 2020.

[20] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury.
Binary rewriting without control flow recovery. In
Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2020, page 151–163, New York, NY, USA, 2020.
Association for Computing Machinery.

[21] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. Afl++: Combining incremental steps
of fuzzing research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20), 2020.

[22] Antonio Flores-Montoya and Eric Schulte. Datalog
disassembly. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1075–1092. USENIX
Association, August 2020.

[23] Dongsoo Ha, Wenhui Jin, and Heekuck Oh. Repica:
Rewriting position independent code of arm. IEEE
Access, 6:50488–50509, 2018.

[24] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.
Magma: A ground-truth fuzzing benchmark. Proc. ACM
Meas. Anal. Comput. Syst., 4(3), nov 2020.

[25] R. Nigel Horspool and Nenad Marovac. An approach
to the problem of detranslation of computer programs.
The Computer Journal, 23(3):223–229, 1980.

[26] Taegyu Kim, Chung Hwan Kim, Hongjun Choi, Yonghwi
Kwon, Brendan Saltaformaggio, Xiangyu Zhang, and
Dongyan Xu. Revarm: A platform-agnostic arm binary
rewriter for security applications. In Proceedings
of the 33rd Annual Computer Security Applications
Conference, pages 412–424, 2017.

[27] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2123–2138, 2018.

[28] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N. Asokan. PAC
it up: Towards pointer integrity using ARM pointer
authentication. In 28th USENIX Security Symposium
(USENIX Security 19), pages 177–194, Santa Clara, CA,
August 2019. USENIX Association.

[29] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instru-
mentation. Acm sigplan notices, 40(6):190–200, 2005.

[30] Catalin Marinas. Linux kernel mailing list: [patch]
arm64: Introduce execute-only page access per-
missions. https://lore.kernel.org/lkml/
1470937490-7375-1-git-send-email-catalin.
marinas@arm.com/, 2016.

[31] Catalin Marinas. Linux kernel git history: arm64:
Revert support for execute-only user mappings.
https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
24cecc37746393432d994c0dbc251fb9ac7c5d72,
2020.

[32] Xiaozhu Meng and Weijie Liu. Incremental cfg patching
for binary rewriting. In Proceedings of the 26th ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS 2021, page 1020–1033, New York, NY, USA,
2021. Association for Computing Machinery.

[33] Vladimir Murzint. Linux kernel mailing list:
[patch v4 0/2] arm64: Support enhanced pan.
https://www.spinics.net/lists/arm-kernel/
msg881621.html, 2021.

https://lore.kernel.org/lkml/1470937490-7375-1-git-send-email-catalin.marinas@arm.com/
https://lore.kernel.org/lkml/1470937490-7375-1-git-send-email-catalin.marinas@arm.com/
https://lore.kernel.org/lkml/1470937490-7375-1-git-send-email-catalin.marinas@arm.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=24cecc37746393432d994c0dbc251fb9ac7c5d72
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=24cecc37746393432d994c0dbc251fb9ac7c5d72
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=24cecc37746393432d994c0dbc251fb9ac7c5d72
https://www.spinics.net/lists/arm-kernel/msg881621.html
https://www.spinics.net/lists/arm-kernel/msg881621.html


[34] Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser,
Jack W Davidson, and Matthew Hicks. Breaking
through binaries: Compiler-quality instrumentation for
better binary-only fuzzing. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[35] Susanta Nanda, Wei Li, Lap-Chung Lam, and Tzi-cker
Chiueh. Bird: Binary interpretation using runtime disas-
sembly. In International Symposium on Code Generation
and Optimization (CGO’06), pages 12–pp. IEEE, 2006.

[36] Mathias Payer and Thomas R. Gross. Fine-grained
user-space security through virtualization. In Proceed-
ings of the 7th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE ’11,
page 157–168, New York, NY, USA, 2011. Association
for Computing Machinery.

[37] Manish Prasad and Tzi-cker Chiueh. A binary rewriting
defense against stack based buffer overflow attacks. In
USENIX Annual Technical Conference, General Track,
pages 211–224, 2003.

[38] Majid Salehi, Danny Hughes, and Bruno Crispo. µsbs:
Static binary sanitization of bare-metal embedded
devices for fault observability. In 23rd International
Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020), pages 381–395, 2020.

[39] Eric Schulte, Vlad Folts, and Michael Brown. Binary
lifter evaluation. arXiv preprint arXiv2203.13231, 2022.

[40] Kevin Scott, Naveen Kumar, Siva Velusamy, Bruce
Childers, Jack W Davidson, and Mary Lou Soffa. Retar-
getable and reconfigurable software dynamic translation.
In International Symposium on Code Generation and Op-
timization, 2003. CGO 2003., pages 36–47. IEEE, 2003.

[41] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. Addresssanitizer: A
fast address sanity checker. 2012.

[42] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi,
Aravind Machiry, John Grosen, Paul Grosen, Christo-
pher Kruegel, and Giovanni Vigna. Ramblr: Making
reassembly great again. In NDSS, 2017.

[43] Shuai Wang, Pei Wang, and Dinghao Wu. Re-
assembleable disassembling. In 24th USENIX Security
Symposium (USENIX Security 15), pages 627–642, 2015.

[44] Richard Wartell, Vishwath Mohan, Kevin W Hamlen,
and Zhiqiang Lin. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In
Proceedings of the 2012 ACM conference on Computer
and communications security, pages 157–168, 2012.

[45] Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat
Kantarcioglu, and Bhavani Thuraisingham. Differen-
tiating code from data in x86 binaries. In Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases, pages 522–536. Springer, 2011.

[46] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich,
and Edgar Weippl. From hack to elaborate technique—a
survey on binary rewriting. ACM Computing Surveys
(CSUR), 52(3):1–37, 2019.

[47] David Williams-King, Hidenori Kobayashi, Kent
Williams-King, Graham Patterson, Frank Spano, Yu Jian
Wu, Junfeng Yang, and Vasileios P Kemerlis. Egalito:
Layout-agnostic binary recompilation. In Proceedings
of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 133–147, 2020.

[48] M. Zalewski. American fuzzy lop. http://lcamtuf.
coredump.cx/afl/. Accessed: 2020-11-03.

[49] Mingwei Zhang and R Sekar. Control flow integrity for
COTS binaries. In 22nd USENIX Security Symposium
(USENIX Security 13), pages 337–352, 2013.

[50] Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer,
Xuwei Liu, and Xiangyu Zhang. Stochfuzz: Sound and
cost-effective fuzzing of stripped binaries by incremental
and stochastic rewriting. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 659–676. IEEE, 2021.

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/


A SPEC CPU2017 Configuration

The benchmarks were compiled with gcc version 7.5.0
on Ubuntu 18.04. The following command line flags were
used to compile the baseline benchmark binaries: “-O3
-fgnu89-inline -fno-strict-aliasing”, in addition
to the flags to produce position-independent executables.
The “-fgnu89-inline” flag uses GNU semantics for
inline functions, and resolves issues with duplicate symbols
errors during the compilation of the gcc_r benchmark. The
“-fno-strict-aliasing” flag disables GCC’s aggressive
aliasing compilation, and is recommended to be used by
the SPEC CPU2017 manual [7] to avoid problems with the
perlbench_r benchmark.

B Fuzzing Configuration

The same machine as above was used to run the Magma
fuzzing benchmark. We completed fuzzing campaigns for
6 of the 9 available targets. The three excluded targets are
the following: openssl did not compile as Magma’s own
instrumentation interferes with openssl’s generation of armv8
neon instructions; php and poppler built successfully but
Magma’s instrumentation caused crashes when running them.

To fuzz the Nvidia closed-source binaries, a Macbook Air
M1 running an Ubuntu 20.04 virtual machine was used.

C PC-relative Pointer Construction Detection

We carefully analyzed the aarch64 ISA [8] to determine that
every possible way of reading the PC register to perform a
PC-relative pointer construction is handled by ARMore. We
determined that the are only two instructions that would let the
user access the PC register: one is adr/adrp, and the other one
is bl/blr, which stores the program counter in the link register
(x30). Unlike the PC, the link register is a general-purpose
register that can be used in standard arithmetic instructions.

It is then possible to perform a PC-relative pointer construc-
tion without adrp by using the link register; however, we would
like to note that ARMore also supports those alternative pointer
constructions thanks to call emulation. In fact, call emulation
makes sure that even the return address (x30) points to the
replicated layout, having the same effect as a symbolized adrp.

Nonetheless, in Linux, there are more intricate ways of
performing PC-relative pointer constructions through the use
of certain syscalls. It would be possible to access the value of
the PC register and perform pointer calculations on it through
the sigreturn syscall or through the ptrace syscall. We con-
sider such kernel-enabled pointer constructions out of scope.

@ patch-CVE-2018-7584.s:10063740
@ php_stream_url_wrap_http_ex:
sub x0, x0, #1
.LC509860:
add x1, sp, #0xfb8
+ cmp x0, 1
+ b.lt .LC5098a0
.LC509864:
ldrb w0, [x1, x0]
.LC509868:

@ patch-CVE-2018-7584.s:10063760
@ php_stream_url_wrap_http_ex:
sub x0, x0, #1
.LC509884:
add x1, sp, #0xfb8
+ cmp x0, 1
+ b.lt .LC5098a0
.LC509888:
ldrb w0, [x1, x0]
.LC50988c:

@ patch-CVE-2014-9912.s:8614072
@ get_icu_disp_value_src_php:
bl .LC8c6d3c
.LC28853c:
ldr x0, [sp, #0x50]
+ cmp x0, 157
+ b.le .LC288540
+ ldr x0, [sp, #0x18]
+ movz w1, #0x2
+ str w1, [x0, #8]
+ b .LC2888f4
.LC288540:
cmp x0, #0
.LC288544:

Listing B.1: Patch for CVE-2018-7584 (top) and for
CVE-2014-9912 (bottom)

100 101 102 103 104 105

Time (seconds)

0

200

400

600

800

1000

1200

Co
ve

ra
ge

 (s
an

co
v)

AFL++
AFL-QEMU
ARMore

Figure B.1: Coverage growth obtained through AddressSan-
itizer’s SanitizerCoverage over a 24 hours long campaign of
Magma’s libpng fuzzing benchmark.



Benchmark ind. branches direct calls ind. calls call emu.
overhead

perlbench 9,839,056,435 11,810,639,918 1,721,778,534 n/a
mcf 0 520,753,233 19,996,295,731 n/a
x264 2,473,804 549,379,828 572,040,319 n/a
gcc 323,630,018 3,370,258,184 326,599,342 n/a
imagick 38,276,695 24,167,325,317 18,757,658 n/a
xz 67,894 446,404,721 167,440,973 n/a
namd 0 385,028,671 786,243 n/a
lbm 0 2,632,380 1 n/a
nab 0 6,205,496,203 249 n/a
blender 9,629,315 5,852,242,234 467,613,407 6.30%
omnetpp 1,008,124,033 16,053,013,858 9,850,558,943 27.51%
roms 156 3,357,706,737 1 0.68%

Benchmark ind. branches direct calls ind. calls call emu.
overhead

exchange2 0 842,168,009 1 0.12%
fotonik3d 0 63,245,152 1 -0.23%
cam4 50 10,940,860,882 29,589 0.06%
deepsjeng 0 37,382,796,458 1 0.13%
cactuBSSN 62,604 1,151,872,346 166,403 1.5%
bwaves 0 248,306,860 1 1.6%
xalancbmk 1,704,852,967 7,359,895,165 5,473,559,842 25.14%
wrf 6,902 13,867,246,237 13,216 0.15%
parest 277,732 6,103,591,316 2,641,122,850 3.66%
leela 0 55,572,754,413 7 48.18%
povray 122,816,388 52,852,836,367 28,258,792,224 58.48%

Table B.1: Number of indirect calls/branches executed at runtime by each of the SPEC CPU2017 binaries during their respective
benchmark.

Symbolization Reassembly

400: adrp x0,

.text

0xf00
404: add x0, x0, 3
408: ldrb w1, [x0, w1, uxtw]
40c: adr x0, 0x418
410: add x0, x0, w1, sxtb 2
414: br x0
418: movz x0, 1 ;case 0,1
41c: ret
420: movz x0, 10 ;case 2
424: ret
428: movz x0, 100 ;case 3
42c: ret

f03: .byte 0

.rodata

;case 0
f04: .byte 0 ;case 1
f05: .byte 2 ;case 2
f06: .byte 4 ;case 3

Jumptable
detected

Not detected!

.L400: adrp x0,

.instrumented_text

.Lf00
.L404: add x0, x0, 3
.L408: ldrb w1, [x0, w1, uxtw]
.L40c: adr x0, .L418
.L410: add x0, x0, w1, sxtb 2
.L414: br x0
.L418: movz x0, 1 ;case 0,1

+ add x0, x0, 1
.L41c: ret
.L420: movz x0, 10 ;case 2

+ add x0, x0, 1
.L424: ret
.L428: movz x0, 100 ;case 3

+ add x0, x0, 1
.L42c: ret

f03: .byte

.old_rodata

(.L418-.L418)/4
f04: .byte
(.L418-.L418)/4

f05: .byte
(.L420-.L418)/4

f06: .byte
(.L428-.L418)/4

.text
(rebound table)

...

800: adrp x0,

.instrumented_text

.Lf00
804: add x0, x0, 3
808: ldrb w1, [x0, w1, uxtw]
80c: adr x0, .L418
810: add x0, x0, w1, sxtb 2
814: br x0
818: movz x0, 1 ;case 0,1
81c: + add x0, x0, 1
820: ret
824: movz x0, 10 ;case 2
828: + add x0, x0, 1
82c: ret
830: movz x0, 100 ;case 3
834: + add x0, x0, 1
838: ret

f03: .byte 0

.old_rodata

f04: .byte 0
f05: .byte 3
f06: .byte 6

.text
(rebound table)

...

.L400: adrp x0,

.instrumented_text

.Lf00
.L404: add x0, x0, 3
.L408: ldrb w1, [x0, w1, uxtw]
.L40c: ;adr x0, 0x418

+ adrp x0, x0, 0x400
+ add x0, x0, 18

.L410: add x0, x0, w1, sxtb 2

.L414: br x0

.L418: movz x0, 1 ; ???
+ add x0, x0, 1

.L41c: ret

.L420: movz x0, 10 ; ???
+ add x0, x0, 1

.L424: ret

.L428: movz x0, 100 ; ???
+ add x0, x0, 1

.L42c: ret

.Lf03: .byte 0

.old_rodata

.Lf04: .byte 0

.Lf05: .byte 2

.Lf06: .byte 4

400: b

.text
(rebound table)

.L400
404: b .L404
408: b .L408
40c: b .L40c
410: b .L410
414: b .L414
418: b .L418
41c: b .L41c
420: b .L420
424: b .L424
428: b .L428

x0

800: adrp x0,

.instrumented_text

0xf00
804: add x0, x0, 3
808: ldrb w1, [x0, w1, uxtw]
80c: + adrp x0, x0, 0x400
810: + add x0, x0, 18
814: add x0, x0, w1, sxtb 2
818: br x0
81c: movz x0, 1 ;case 0, 1
820: + add x0, x0, 1
824: ret
828: movz x0, 10 ;case 2
82c: + add x0, x0, 1
830: ret
834: movz x0, 100 ;case 3
838: + add x0, x0, 1
83c: ret

f03: .byte 0

.old_rodata

f04: .byte 0
f05: .byte 2
f06: .byte 4

400: b

.text
(rebound table)

0x800
404: b 0x804
408: b 0x808
40c: b 0x80c
410: b 0x814
414: b 0x818
418: b 0x81c
41c: b 0x824
420: b 0x828
424: b 0x830
428: b 0x834

Figure C.1: Jump table rewriting example. Instrumentation is inserted during the symbolization phase (the green add instructions).
Above, the jump table is correctly detected: the adr at .L40c is updated to point to the base case and the offsets in .rodata are
symbolized and corrected. Below, the jump table is not detected: the adr at .L40c is substituted with a pointer construction to
the rebound table, and the offsets are the old ones but still valid as the indirect jump goes through the rebound table.


	Introduction
	Background
	Dynamic Instrumentation
	Static Instrumentation
	Static Binary Rewriting Techniques
	ARM Pointer Construction
	ARM Executable-Only Pages

	Challenges and Key Insights
	Challenges
	Limitations of Existing Techniques
	Our Technique
	Layout Replication
	Rebound Table
	Pointer Arithmetic
	Call Emulation
	C++ and Go: Stack unwinding
	Data Mixed With Text
	Stripped and PIE/non-PIE Binaries

	Heuristics as an Opportunity

	Implementation
	Fixing the Address Space
	Support of Data Mixed With Text
	Instrumentation Passes

	Evaluation
	SQLite, Coreutils, Debian (Q1, Q2)
	Open Source Test Suites
	Debian Packages

	Reassembly: SPEC CPU2017 (Q1, Q3)
	Case Study I: Address Sanitization
	Case Study II: Coverage Information
	Case Study III: Fuzzing Real World Closed-source Software
	Case Study IV: Binary Patching
	Frequency of Data Inside Text
	Comparison to Other Rewriters
	Evaluation Summary

	Related Work
	Discussion
	Conclusion
	Acknowledgments
	SPEC CPU2017 Configuration
	Fuzzing Configuration
	PC-relative Pointer Construction Detection

