
Temperature Impact on Remote Power Side-Channel
Attacks on Shared FPGAs
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Abstract—To answer the growing demand for hardware accel-
eration, Amazon, Microsoft, and many other major cloud service
providers have included field-programmable gate arrays (FPGAs)
in their datacenters. However, researchers have shown that cloud
FPGAs, when shared between multiple tenants, face the threat of
remote power side-channel analysis (SCA) attacks. FPGA time-to-
digital converter (TDC) sensors enable adversaries to sense voltage
fluctuations and, in turn, break cryptographic implementations or
extract confidential information with the help of machine learning
(ML). The operating temperature of the TDC sensor affects the
traces it acquires, but its impact on the success of remote power
SCA attacks has largely been ignored in literature. This paper
attempts to fill in this gap. We focus on two attack scenarios:
correlation power analysis (CPA) and ML-based profiling attacks.
We show that the temperature impacts the success of the remote
power SCA attacks: with the ambient temperature increasing,
the success rate of the CPA attack decreases. In-depth analysis
reveals that TDC sensor measurements suffer from temperature-
dependent effects, which, if ignored, can lead to misleading
and overly optimistic results of ML-based profiling attacks. We
evaluate and stress the importance of following power side-channel
trace acquisition guidelines for minimizing the temperature effects
and, consequently, obtaining a more realistic measure of success
for remote ML-based profiling attacks.

Index Terms—FPGA, multitenancy, machine learning, side-
channel attacks, temperature

I. INTRODUCTION

The flexibility of field-programmable gate arrays (FPGAs),
coupled with their highly-parallel architecture and energy
efficiency, has led to the integration of FPGAs in various
systems—from small embedded devices to datacenters and,
recently, the public cloud. As a result, increased efforts are
being made to enable secure virtualization and sharing of
FPGA hardware acceleration fabric [1], [2]. At the same time,
sharing FPGA resources implies many security issues, most of
which are due to the electrical-level coupling via the shared
power distribution network (PDN) or long wires [3]. However,
finding a comprehensive solution to these issues remains an
open research question [4].

Shared FPGAs are prone to remote power side-channel anal-
ysis (SCA) attacks [5], [6], as the low-level programmability
of FPGAs allows implementing remotely-accessible voltage-
fluctuation sensors directly in the FPGA fabric [7]. Attackers
can leverage these sensors to break the secret keys of advanced
encryption standard (AES) and Rivest-Shamir-Adleman (RSA)
hardware accelerators, as well as software implementations
of AES and RSA running on an ARM CPU in FPGA-based
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SoCs [5], [8]. Recent research leverages machine learning (ML)
methods for profiling attacks, where ML models are trained on
power traces of open-source designs (e.g., a neural network
accelerator) likely to be deployed on the cloud and exposed
to attackers. FPGA voltage sensors also enable recognizing
and classifying FPGAs workloads [9] or recovering the neural
network topology or hyperparameters [10]–[12].

In remote power SCA attacks, attackers implement on-
chip sensors using FPGA fabric, which, in turn, is vulnerable
to temperature-induced delay changes [13], [14]. In previous
work, authors assumed negligible temperature changes during
the operation of the victim circuit. However, in the case of
ML-based profiling attacks in particular, trace acquisition can
take a very long time (even days [15]); therefore, temperature
variations unavoidably occur. Ignoring them, as we demonstrate
in this paper, can lead to erroneous observations. For example,
in the presence of temperature variations, ML models, instead
of learning the target side-channel leakage, may inadvertently
learn temperature effects that are otherwise not present in a real-
life setup. Although remote power SCA attacks can succeed at
different temperatures [10], [16], we find a better understanding
of the temperature effects is necessary for future work.

Our key contributions are:

1) Analysis of the temperature impact on sensor measure-
ments. We show, mathematically and experimentally, that
sensor traces suffer from the same drifting offset seen in
oscilloscope traces [15], and that the variance of trace
samples is temperature dependent. These effects directly
impact the measured side-channel leakage and are re-
flected in the success of a correlation power analysis (CPA)
attack on an AES encryption module.

2) Analysis of the temperature impact on the accuracy of
ML-based profiling attacks. When the power side-channel
leakage is limited, and the trace acquisition takes a non-
negligible time, we show that incautious trace acquisition
can lead to ML models biased by temperature, resulting
in misleadingly high accuracy. We analyze this unwanted
effect and quantify the impact of correct trace acquisition
techniques on accuracy.

In the remainder of the paper, we first give a background
on time-to-digital converters (TDCs), the most commonly used
FPGA voltage sensors (Section II). Next, Section III discusses
the impact of temperature on the sensor output. Section IV
describes our experimental evaluation methodology. In Sec-
tion V, we present the results. Section VI discusses related
work. Finally, Section VII concludes the paper.
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Fig. 1. Time-to-digital converter (TDC) sensor architecture.

II. TIME-TO-DIGITAL CONVERTERS AS VOLTAGE SENSORS

TDCs and ring oscillators (ROs) are the most commonly
used FPGA sensors in remote power SCA attacks. Neither
TDCs nor ROs measure voltage fluctuations directly, as voltage
measurement is only possible with dedicated FPGA system
monitors with low sampling frequencies [17]. Instead, these
sensors measure changes in the logic delay. Since the delay and
voltage are (inversely) related, TDC and RO sensor readings
can be used directly for the power SCA attacks. TDC sensors
can capture voltage variations in time intervals as short as a
few nanoseconds [7]. Compared to TDCs, RO-based sensors
take up less FPGA resources, but they require a considerably
longer time for a single measurement [18]. Therefore, when a
high sampling rate is required, as is the case in remote power
SCA attacks, TDCs are the adversary’s preferred choice.

Fig. 1 shows a simplified view of a TDC sensor. This circuit
estimates the supply voltage by measuring the propagation
depth of a clock signal through a delay line [7]. The initial delay
line, used for calibration, is typically implemented using FPGA
logic with a higher propagation delay (e.g., LUTs, latches). The
observable delay line, which measures the clock propagation
depth, is implemented with fast carry-chain primitives for a
high measurement resolution. The outputs of the observable
delay line connect to a dedicated output register, sampled using
the sensor clock. As the goal is to measure the propagation
depth of the sensor clock through the delay line, proper
calibration is necessary to ensure correct functionality. This
procedure involves configuring the number of initial delay line
elements so that the clock edge lands in the output register in
every sample of the power trace.

III. TEMPERATURE IMPACT ON TDC SENSORS

The cell delay impacts circuit performance and limits the
maximum operating frequency. In a simple circuit delay model,
e.g., the alpha-power law [19], the cell delay is inversely
proportional to the drain current Id of a CMOS transistor. Id
can be expressed as

Id ∝ µe(T )(Vdd − Vth(T ))
α, (1)

where µe represents the mobility, Vdd the supply voltage, Vth

the threshold voltage, α a small positive constant, and T the
temperature [14]. The threshold voltage and mobility decrease
with the rise of temperature, leading to two opposite effects
on the drain current: decreased mobility reduces the drain
current, while lower threshold voltage increases it. At high
voltages, the mobility dominates Equation (1), resulting in
a delay increase with the temperature. In contrast, at lower

voltages, Vth becomes the dominant factor, resulting in a delay
decrease at higher temperatures. The voltage at which the
temperature dependence inverts is called the crossover voltage,
and it depends on the fabrication technology. This inverse
temperature dependence (ITD) phenomenon was thoroughly
studied across different fabrication technologies [14], [20].

Let us now formalize the temperature impact on the TDC
sensor. As previously explained, the delay of a logic circuit
d(T, V ) is indirectly proportional to the drain current Id.
Depending on the technology and the voltage V , Id can be
directly or inversely proportional to the temperature. In addition
to the carrier mobility and threshold voltage, Id depends on the
Johnson-Nyquist thermal noise, which is constant across the
spectrum and increases with temperature [21]–[23]. Moreover,
the sub-threshold leakage current in lower technology nodes
represents a source of noise that increases with the tempera-
ture [24]. Therefore, we can formalize the delay of a circuit
under constant voltage as

d(T +∆T ) ∝ d(T ) + ∆d(∆T ) + δ(∆T ), (2)

where ∆T is the temperature change, ∆d is the change in
delay, and δ is the thermal noise. When ∆T is positive, and the
carrier mobility dominates Equation (1), ∆d(∆T ) decreases.
Otherwise, ∆d(∆T ) increases with the temperature when the
threshold voltage dominates.

The TDC sensor measures the number of delay elements
through which an input clock has propagated during one
sampling period tsample. The relationship between the sampling
period and the sensor output can be represented as tsample =
O(T )d(T ), where d(T ) is the delay of one delay element and
O(T ) is the sensor output, i.e., the number of delay elements
the input clock has traversed. When the temperature changes
by ∆T , the sensor output becomes

O(T +∆T ) =
tsample

d(T +∆T )
=

O(T )d(T )

d(T ) + ∆d(∆T ) + δ(∆T )
. (3)

Therefore, when the delay increases with the temperature,
the clock propagates through fewer elements in the delay line,
resulting in lower sensor output. Otherwise, in the ITD case,
temperature increase results in higher sensor output.

From (3), we find the expressions for the trace DC offset µ
(i.e., the mean of all the samples in a trace) and the variance
σ2 (i.e., the dispersion of the values in a sensor trace):

µ =
1

N

N∑
i

Oi(T +∆T ) ∼ 1

∆d(∆T ) + δ(∆T )
, (4)

σ2 =
1

N

N∑
i

(Oi(T +∆T )− µ)2 ∼ 1

∆d2(∆T ) + δ2(∆T )
. (5)

Here, N is the number of sensor samples per trace. From (4)
and (5), we can conclude that the trace DC offset is inversely
proportional to the logic delay, while the variance is inversely
proportional to the delay squared.



IV. EVALUATING THE IMPACT OF TEMPERATURE

In the context of remote power SCA attacks, we evaluate the
impact of temperature on the sensor leakage and the ML-based
power side-channel attacks.

A. Leakage Analysis

In our first experiment, we evaluate how the sensor trace
statistics change in the function of the temperature. In a thermal
chamber, we start with a constant 40°C, and while recording
AES encryptions, we increase the temperature in steps of 5°C
up to 60°C. We measure the DC offset and variance of the
sensor traces, two critical statistical parameters for SCA attacks.

Sudden ambient temperature variations—and their potential
impact on the DC offset and variance of the sensor traces—
could cause degradation in the Pearson correlation coefficient
in the CPA attack, resulting in a higher number of traces to
break the secret key. Therefore, in our second experiment, using
the key rank (KR) estimation metric [25], we evaluate how
transient temperature changes impact the success of the CPA
attack against an AES hardware module. If the impact is signif-
icant, the temperature could severely interfere with conclusions
between two different experiment runs (e.g., comparing the
side-channel security of two cryptographic implementations).

Finally, we analyze the difference in side-channel leakage for
traces recorded at different stable temperatures. In a thermal
chamber with stable operating temperatures above 35°C, we
record ten runs at 40°C, 45°C, 50°C, 55°C, and 60°C. For each
temperature, we compute the average number of traces needed
to break the key using the CPA attack and the KR estimation
metric [25]. Significantly varying leakage at different external
temperatures indicates a potential problem with lengthy exper-
iments: traces acquired over a long time may result in skewed
ML models, which are either degraded by the thermal noise or
learn the temperature patterns instead of the actual leakage.

B. ML Accuracy Evaluation

To evaluate the influence of the temperature and the trace
acquisition method on ML classification problems, we devise
three attack scenarios, i.e., victim workloads, each with a
different classification complexity:

• Hardware workload classification. The victim contains
several hardware modules, with only one running at a time.
We choose four encryption cores: AES, PRESENT, KLEIN,
and CRYPTON. All implementations are open source and
available in the SCABox repository [26]. Using these cores, the
attacker can train an ML model to identify the currently running
hardware operation. This classification problem is considered
easy [9], as the power consumption traces of entirely different
hardware cores usually contain particular identifiers.

• Soft-core CPU workload classification. The victim is an
open-source soft-core RISC-V CPU executing eight code snip-
pets on random data. Each code snippet is intensive in one
of the RV32I ISA instruction types: load, store, branch,
arith, compare, shift, logic, and jump. The attacker,
having access to the same CPU design and code, profiles the
code snippets on many executions with random data inputs

and trains a model to identify the one the victim is running.
Gobulukoglu et al. showed that distinguishing between different
soft-core CPU workloads is a difficult classification problem,
and achieved an average classification accuracy of ∼ 50% [9].

• Soft-core CPU instruction subset classification. Here, the
attacker is trying to identify instructions from the subset of the
RV32I instruction set. The attacker trains on 10k instruction
templates where the target instruction has randomized operands
and data, and is surrounded by nop instructions. The templated
instructions are jal, add, xor, sll, lw, sw, bne (not taken),
bne (taken), and slt. Because individual CPU instructions
have a short execution time, if the sensor has the same
sampling frequency as the CPU, the leakage is limited, and
the classification problem is considered hard.

To evaluate the temperature impact on the ML classification
accuracy at room temperature, we use two trace acquisition
methods for each workload, one incorrect and one recom-
mended for power side-channel evaluation [25]:

• Consecutive acquisition, room temperature (CR). In this
method—contrary to the recommended trace acquisition guide-
lines [25]—the traces of each ML class are acquired separately,
by first recording all traces of class 1, then class 2, etc. When
there is a large number of traces per class, and the trace
acquisition takes hours, each class (i.e., specific workload) can
be considered as recorded at a distinct temperature.

• Interleaved acquisition, room temperature (IR). In this rec-
ommended trace acquisition method—commonly used in power
side-channel evaluation methods such as the t-test [25]—the
traces of each ML class are acquired in an interleaved fashion,
by recording a single trace of each class, in a randomized order,
before continuing the acquisition of the next group of power
traces. For many traces per class, interleaving the traces ensures
equal temperature effects across all classes.

To evaluate model robustness and simulate exaggerated tem-
perature changes during trace acquisition, we record two trace
sets for hardware workload classification in a thermal chamber:

• Consecutive acquisition, thermal chamber (CT). The traces
of each ML class are acquired separately. However, to ex-
aggerate temperature variations, each class is recorded at a
different but stable temperature: PRESENT at 38°C, AES at
43°C, KLEIN at 48°C, and CRYPTON at 53°C.

• Interleaved acquisition, thermal chamber (IT). The trace
acquisition is interleaved, spreading the significant temperature
changes across all classes. There are four sets of traces recorded
at different stable temperatures: 38°C, 43°C, 48°C, and 53°C.

For classification, we implement five ML models commonly
used in previous work: convolutional neural network (CNN1
and CNN2, a large and a small model), multilayer perceptron
(MLP), long short-term memory (LSTM), and random forest
classifier (RFC) [9]–[11]. Table I lists their architectural details.
When training, we set the batch size to 64 and use the Adam
optimizer while monitoring the loss to adapt the learning rate.
We train on 90% of the dataset and use the remaining 10%
for testing. The test/train split is performed randomly and in
a stratified fashion. We train for 50 and 100 epochs for the
hardware and software workload classification, respectively.



TABLE I
ARCHITECTURE DETAILS OF THE ML MODELS.

Model Architecture

LSTM LSTM(100 units) + Dropout(0.2) + Dense(100 units, ReLU) + Dense(Softmax)
CNN1 Conv1D(X filters, kernel size of Y) + MaxPool(2) | (X,Y) = ((32, 12), (45, 10), (64, 8), (128, 4)) + Dropout(0.2) + Dense(100 units, ReLU) + Dense(Softmax)
CNN2 Conv1D(64 filters, kernel size of 10) + MaxPool(2) + Conv1D(64 filters, kernel size of 4) + MaxPool(2) + Dropout(0.2) + Dense(100 units, ReLU) + Dense(Softmax)
RFC number of estimators = 100
MLP Dense(X units, ReLU) | X = (250, 350, 150, 50) + Dropout(0.2) + Dense(100, ReLU) + Dense(Softmax)

V. RESULTS AND DISCUSSION

A. Leakage Analysis

Following the methodology in Section IV, we first evaluate
the temperature impact on the sensor traces and the success
of the CPA attack. We use a Digilent Basys3 (AMD Artix-
7 XC7A36T FPGA): a cost-efficient FPGA platform suitable
for potentially damaging thermal chamber experiments. With a
single 128-bit TDC sensor (observable line with 128 elements)
operating at 200 MHz, we record the power traces of an open-
source AES-128 core clocked at 50 MHz [27]. To facilitate
comparison between the experiments, we always use the same
encryption key and the same set of plaintexts, and keep the
sensor calibration constant.

In our first experiment, we record 900k AES traces in the
thermal chamber, increasing the temperature over time: from
40°C to 60°C in steps of 5°C. Fig. 2 shows the trace DC offset,
variance, and on-chip temperature in function of the elapsed
time, as represented by the index of the recorded trace. We
can observe that both the DC offset and the variance increase
with the temperature; hence, the temperature-delay dependence
lies in the ITD domain, where the threshold voltage dominates
Equation (1). This experiment shows that the temperature
significantly impacts the TDC sensor output and should not
be overlooked when recording traces using on-chip sensors.

Next, we investigate how sudden temperature changes during
the trace collection impact the success of the CPA attack.
Before the experiment, we place the device in a cool place.
Then, we record two datasets: 70k traces at a low temperature
and 70k traces where the device is returned to room temperature
after 10k traces to warm up gradually. Fig. 3 shows the KR
estimation when attacking the key using CPA, in the function
of the number of traces used in the attack. The temperature
change has a visible impact: the orange line stops following
the gray one and stagnates instead of decreasing. Consequently,
the KR estimation drops to zero later, and the number of traces
required to break the key increases. The reason is clear: as
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Fig. 2. The trace DC offset and variance at different on-chip temperatures, in
the function of elapsed time, i.e., the trace acquisition index.
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Fig. 4. Impact of the environment temperature on the sensor trace DC offset,
variance, and the number of traces needed to break the key using CPA.

the CPA attack is performed using the Pearson correlation
coefficient, any change in the trace DC offset and variance
directly impacts the attack’s success. This result shows that
in security-sensitive experiments, such as comparing the side-
channel security of cryptographic designs, it is important to
consider environmental temperature changes and follow correct
trace acquisition guidelines that minimize their impact [25].

Last, we examine the impact of stable temperature on the
attack’s success. For each temperature outlined in Section IV-A,
we record ten experiment runs in the thermal chamber and
compute the average trace DC offset, variance, and the number
of traces required for a successful attack (when the KR esti-
mation metric first drops to zero). Fig. 4 shows the results,
averaged across ten runs. We can observe that more traces
are required for a successful attack at higher temperatures and
that thermal noise, more pronounced at higher temperatures,
can increase the attack effort, resulting in approx. 1.4× more
traces to break the key. Although the trace variance increases,
the quality of sensor traces degrades at higher temperatures
because the thermal noise becomes the dominant factor.

B. ML Accuracy Evaluation

1) Hardware workload classification: For this experiment,
we use SCABox [26], an open-source tool for side-channel
evaluation on Digilent ZedBoard (AMD Zynq-7000 FPGA).
We instantiate four cores working at 10 MHz: AES, PRESENT,
KLEIN, and CRYPTON. As the AES is considerably larger
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Fig. 5. Impact of the trace recording methodology on the ML model accuracy,
in the case of hardware workload classification.

than other cores, we replicate the other cores eight times to
obtain hardware workloads of approximately the same size and
avoid classes with significantly different features. The SCABox
instantiates eight TDC sensors, operating at 200 MHz.

For each core, we record 10k traces for IR, CR, IT, and
CT datasets, and train five ML models (Section IV-B). In
all cases, our models achieve 100% accuracy, showing that
hardware workload classification is an easy problem and that
the temperature does not impact the accuracy.

To evaluate the robustness of the trained models, we validate
them using traces not seen during training and testing (the
validation dataset size is 10% of the corresponding dataset).
Fig. 5 shows that the models trained on the interleaved traces
generalize well, and achieve high validation accuracy when
tested on all the other datasets. As interleaved traces contain
data samples from a wider range of temperatures, they help
build more robust and generalized models.

2) Software workload classification: In this experiment, we
use a high-end FPGA to evaluate the temperature impact on
cloud FPGAs. On an AMD Alveo U200 datacenter accelerator
card (UltraScale+ XCU200 FPGA), we place a PicoRV32
CPU [28] and 30 16-bit TDC sensors running at 320 MHz.

We start by reinvestigating the temperature impact on the DC
offset of the sensor traces. We record 10k traces for each of the
eight code snippets described in Section IV-B. To reduce noise,
instead of recording one execution trace for the given code and
data it operates on, we record and average 1k traces. Fig. 6
shows the average DC offset and the temperature of the traces
of each class, for consecutive and interleaved trace acquisition.
First, we can observe a direct temperature-delay dependence,
because the sensor output drops as the temperature increases.
Second, the DC offset of the traces recorded in the interleaved
fashion does not correlate with the temperature, because the
temperature variations impact all classes equally.

Next, we examine if the temperature impact on the clas-
sification accuracy changes with the dataset size (i.e., the
difficulty of the classification problem). Using the acquired
traces of the eight code snippets, we train the ML models twice:
once with all 10k traces per code snippet and once with only
200 randomly selected traces per code snippet. We repeat the
training with five random seeds and average the results, for
more general conclusions. In addition to having randomized
training parameters, the smaller dataset results in a unique
random subset for each seed. The results in Fig. 7 show that,
when using the entire dataset, both interleaved and consecutive
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in the case of soft-core CPU instruction classification.

datasets result in good accuracy (though lower for LSTM and
CNN2 as they fail to converge for some seeds). However,
training on incorrectly acquired traces results in considerably
higher accuracy with the reduced dataset size, as the ML
models learn the temperature effects instead of the leakage.

Let us now look at the training accuracy evolution. We
record 10k traces for the nine instruction templates described
in Section IV-B, interleaved and consecutive. Fig. 8 shows
the results. Once again, we see that for complex classification
problems (here, limited leakage of a single CPU instruction),
incorrectly (i.e., consecutively) recorded traces mislead the
ML models into learning the temperature effects instead of
the actual leakage. In contrast, training on traces recorded in
an interleaved fashion results in a lower, but more realistic
classification accuracy.

Finally, we evaluate if common preprocessing techniques can
alleviate the unwanted temperature effects from recorded traces.
Table II shows the ML model accuracy when DC removal,
filtering (high-pass with a 5 MHz cutoff), and normalization
(MinMaxScaler) are applied. We see that neither of the three
approaches significantly impacts the model’s accuracy. There-
fore, we can conclude that the temperature impacts not only
the sensor measurements but possibly the power side-channel
leakage generated by the victim.



TABLE II
ACCURACY OF ML MODELS WITH AND WITHOUT PREPROCESSING.

Dataset Preprocessing
Test accuracy (%)

CNN1 CNN2 LSTM MLP RFC

Interleaved None 77.2 78.4 78.2 72.5 46.0
Consecutive None 94.4 94.9 96.4 95.4 92.0
Consecutive DC removal 94.5 94.6 92.4 94.7 81.0
Consecutive Filtering 94.6 94.6 96.1 95.5 93.0
Consecutive Normalization 98.4 98.2 98.0 98.3 92.0

Our results demonstrate that the impact of temperature on
the TDC sensor measurements is important because it can
lead to incorrect conclusions if trace acquisition guidelines
are not followed. In the case of ML-based profiling attacks
specifically, it can skew the accuracy and show better-than-
expected results. Interleaving the trace recordings—the proper
method of acquiring power traces—is necessary for spreading
the temperature effects equally across the dataset.

VI. RELATED WORK

Researchers often leverage ML models for remote power
SCA attacks. Usually, attackers record one set of sensor traces,
randomly splitting it into training (to profile the victim and train
the ML model) and test traces (to evaluate the final accuracy).
Gobulukoglu et al. used short-term Fourier transform and image
classifiers to distinguish between cloud FPGA workloads [9],
achieving high accuracy of 97.6%. They indicated that iden-
tifying soft-core CPU applications is challenging, resulting
in comparatively low accuracy of approx. 50%. Zhang et al.
showed that ML models could predict hyperparameters of a
DNN accelerator with an accuracy of up to 100% [11]. In
addition, Meyers et al. found that ML models can recover
neural network folding [10].

To show model robustness, Meyers et al. [10] trained the
model on traces recorded at room temperature and tested it on
traces recorded at different ambient temperatures. The reported
high accuracy (almost 100%) indicates that the traces contained
substantial side-channel leakage, independent of temperature.
We take a step further and show that when the leakage is limited
(e.g., a small victim circuit), the temperature impact on the
classification accuracy can be significant.

VII. CONCLUSIONS

Varying environmental temperature impacts power side-
channel traces recorded with TDC sensors. Our findings con-
firm that the temperature influences the sensor output and that
this dependence varies across different FPGA families. We
demonstrate that the temperature changes during trace acquisi-
tion impact the attack’s success, as CPA requires more traces
to break the AES encryption key if the temperature increases.
Further, due to temperature, the trace acquisition method can
significantly impact the robustness and the generality of models
in ML-based profiling attacks. We demonstrate that for easily
distinguished classes, (i.e., datasets with models converging to
a 100% accuracy), trace acquisition has little to no impact on
the final accuracy. However, for harder classification problems,
ML models of incorrectly recorded traces learn temperature

variations instead of leakage, resulting in misleadingly higher
accuracy. Our research highlights the importance of adhering
to appropriate trace acquisition guidelines, even in the context
of shared FPGAs, if robust models and a realistic measure of
classification accuracy are to be obtained.
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FPGAs really vulnerable to power analysis attacks?” in DATE, 2020.

[7] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “Sensing
nanosecond-scale voltage attacks and natural transients in FPGAs,” in
FPGA, 2013.

[8] J. Gravellier, J.-M. Dutertre, Y. Teglia, P. Loubet-Moundi, and F. Olivier,
“Remote side-channel attacks on heterogeneous SoC,” in CARDIS, 2019.

[9] M. Gobulukoglu, C. Drewes, W. Hunter, R. Kastner, and D. Richmond,
“Classifying computations on multi-tenant FPGAs,” in DAC, 2021.

[10] V. Meyers, D. R. Gnad, and M. Tahoori, “Reverse engineering neural
network folding with remote FPGA power analysis,” in FCCM, 2022.

[11] Y. Zhang, R. Yasaei, H. Chen, Z. Li, and M. A. A. Faruque, “Stealing
neural network structure through remote FPGA side-channel analysis,” in
FPGA, 2021.

[12] S. Tian, S. Moini, A. Wolnikowski, D. Holcomb, R. Tessier, and J. Szefer,
“Remote power attacks on the versatile tensor accelerator in multi-tenant
FPGAs,” in FCCM, 2021.

[13] D. R. Gnad, F. Oboril, S. Kiamehr, and M. B. Tahoori, “Analysis of
transient voltage fluctuations in FPGAs,” in FPT, 2016.

[14] A. Dasdan and I. Hom, “Handling inverted temperature dependence in
static timing analysis,” TODAES, 2006.

[15] A. Heuser, M. Kasper, W. Schindler, and S. Marc, “A new difference
method for side-channel analysis with high-dimensional leakage models,”
in CT-RSA, 2012.

[16] B. Udugama, D. Jayasinghe, H. Saadat, A. Ignjatovic, and
S. Parameswaran, “VITI: A tiny self-calibrating sensor for power-
variation measurement in FPGAs,” TCHES, 2021.

[17] XADC User Guide UG480, AMD Xilinx, 2023.
[18] S. Moini, A. Deric, X. Li, G. Provelengios, W. Burleson, R. Tessier, and

D. Holcomb, “Voltage sensor implementations for remote power attacks
on FPGAs,” TRETS, 2022.

[19] T. Sakurai and A. R. Newton, “Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas,” JSSC, 1990.

[20] T. Tsai, H.-C. Lin, and P.-W. Li, “Temperature-dependent narrow width
effects of 28-nm CMOS transistors for cold electronics,” J-EDS, 2022.

[21] S. Tedja, J. Van der Spiegel, and H. Williams, “Analytical and experi-
mental studies of thermal noise in MOSFET’s,” T-ED, 1994.

[22] D. Triantis, A. Birbas, and D. Kondis, “Thermal noise modeling for short-
channel MOSFETs,” T-ED, 1996.

[23] J. Schurr, H. Moser, K. Pierz, G. Ramm, and B. P. Kibble, “Johnson-
Nyquist noise of the quantized hall resistance,” IEEE I&M, 2011.

[24] K. M. Zick and J. P. Hayes, “Low-cost sensing with ring oscillator arrays
for healthier reconfigurable systems,” TRETS, 2012.
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