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Abstract
As IoT applications gain widespread adoption, it becomes

important to design and implement IoT protocols with secu-

rity. Existing research in protocol security reveals that the

majority of disclosed protocol vulnerabilities are caused by

incorrectly implemented message parsing and network state

machines. Instead of testing and fixing those bugs after de-

velopment, which is extremely expensive, we would like to

avert them upfront. For this purpose, we propose PROFAC-

TORY which formally and unambiguously models a protocol,

checks model correctness, and generates a secure protocol

implementation. We leverage PROFACTORY to generate a

group of IoT protocols in the Bluetooth and Zigbee families

and the evaluation demonstrates that 82 known vulnerabilities

are averted. PROFACTORY will be publicly available [1].

1 Introduction

As a pillar for smart living, the scale of IoT (Internet of

Things) has recently experienced unprecedented growth in

both the number of devices and their complexity. According to

reports from Statista [11] and Forbes [10], about 26.6 billion

IoT devices were installed and connected worldwide in 2019

and they project to exceed 42 billion devices in 2022, lifting

the global IoT market to more than 1.2 trillion dollars. Such a

growth prospect and tremendous investment are continuously

motivating efforts to develop innovative IoT wireless tech-

niques, such as Bluetooth which has effective connectivity,

low hardware cost and well-maintained development commu-

nity [21, 49]. In particular, Bluetooth has enabled bridging

interfaces between applications and wireless peripherals in-

cluding keyboards/mice, headsets/speakers, smart watches,

fitness trackers, medical recorders, smart home appliances,

and hands-free systems [21, 49]. It was reported that 4.2 bil-

lion Bluetooth devices were shipped in 2019, notching a 8.8%

compound annual growth rate (CAGR) over 5 years [16]. Zig-

bee is another popular IoT protocol which also witnesses a

8.0% CAGR in market growth, and its market value is ex-

pected to reach 4.3 billion by 2023 [14].

However, accompanied with the ubiquitous adoption, secu-

rity has inevitably become a critical issue in IoT protocols. Ac-

cording to the latest Bluetooth market update [16], there were

14 member groups working on 80 active protocol projects dur-

ing 2019. Actually, most of these protocol projects were built

from scratch [13,16,56,64] and this repeated procedure is con-

sidered onerous, tedious, and error-prone [32,33,36,50,60,63],

leading to lots of vulnerabilities in protocol implementations.

As reported by previous research on protocol security [37,45],

the majority of disclosed protocol vulnerabilities are due to

incorrectly-implemented message parsing, where parsing er-

rors can result from the lack of sanity checks (especially for

the sizes of message fields) and parsing ambiguities (caused

by diverting understanding of specification across developers).

Bluetooth implementations are such examples, as reflected

by newly reported Bluetooth-related CVEs (Common Vul-

nerabilities and Exposures) [56]. In addition, protocol imple-

mentation vulnerabilities are also present in state machine

components [35, 44, 61]. Although protocol-specific fuzzing

techniques [23, 34, 60] are helpful in exposing those imple-

mentation bugs, difficulties in stateful fuzzing, specification

encoding, and achieving complete coverage make exposing

all defects infeasible in practice. Therefore, rather than im-

posing a time-consuming postmortem bug finding procedure

in protocol engineering, we propose to address the problem at

the very beginning of the development life-cycle. Specifically,

protocol developers ought to be relieved from the error-prone

low-level implementation efforts. Instead, they should focus

on the design of essential pieces of protocol specifications

(e.g., message format and finite state machine) and the cor-

responding protocol implementations will be automatically

generated in a manner that ensures security.

The recent research shows that formalizing protocol spec-

ifications is a promising approach to addressing this is-

sue [12, 22, 43, 45, 55, 57]. In particular, message formats

are customized in a DSL (Domain Specific Language) and

secure protocol implementations are emitted accordingly. For

example, EverParse [55] devises a DSL describing tag-length-

value message formats to produce zero-copy parsers and cor-

responding serializers. In contrast with existing data serializa-

tion/deserialization tools (e.g., Protobuf [18] and Thrift [20]),

parsers generated by EverParse are formally verified and their

security is guaranteed. Johnson et al. [45] propose a similar

DSL for generating additional sanity checks to harden USB

(Universal Serial Bus) message parsers. Nevertheless, we ob-

serve that existing protocol formalization efforts mostly focus

on message formats but many fall short in modeling some

dynamic functionalities such as multiplexing and state transi-

tions. Consequently, these DSLs require substantial extension

to fit low-level and kernel-oriented IoT protocols.

Our Solution To this end, we elect to develop a new unified



DSL whose syntax can specify both protocol message for-

mats and dynamic behaviors. We propose PROFACTORY to

automatically generate secure low-level protocol implementa-

tions for Linux kernels from protocol specifications written

in the DSL. It aims at facilitating protocol development, and

eliminating message-parsing vulnerabilities and fundamental

state-transition errors in protocol implementations. Currently,

PROFACTORY targets code generation for IoT protocols in

the Linux kernel including those in the Bluetooth and Zigbee

families. It can be easily adapted for other protocols or pro-

duction kernels as long as the platform-dependent interfaces

and settings are available.

Specifically, PROFACTORY works as follows. First, a pro-

tocol is modeled/customized in our DSL. Then, symbolic

model checking is performed to verify the model correct-

ness (e.g., network state transitions are not vulnerable). After

passing model checking, the customized protocol model is

fed to the code generation engine to produce kernel-oriented

protocol implementation which provides guarantees of being

free from memory safety vulnerabilities (i.e., buffer overflow,

invalid pointer dereference, memory leakage, use after free

and double free) in message parsing and from concurrency

control vulnerabilities (i.e., race and deadlock) in message

multiplexing. Such guarantees are provided by the automati-

cally generated sanity checking code, such as bound checks

and input validation checks, and by applying automated ver-

ification tools to the generated code. Only if the protocol

passes the model and implementation verification, should the

implementation be integrated into the production kernel on

both of the communication peers. Finally, the peers commu-

nicate through the customized protocol. We highlight our

contributions in the following.

• We propose PROFACTORY, a novel system that realizes

efficient and secure protocol customization. In PROFACTORY,

developers formally and unambiguously model protocols in a

DSL instead of natural languages and the models lead to the

production of vulnerability-free implementations.

• We develop a type-based DSL that is closely coupled

with protocol semantics. In our DSL, various protocol spec-

ifications such as message format, finite state machine and

connection multiplexing can be well expressed by a number

of abstract types.

• We develop a code generation engine, emitting kernel

code without message-parsing errors according to the DSL-

defined protocol model, where concurrency correctness and

memory access safety of generated C codes are formally veri-

fied using VCC [2, 52] and Frama-C [17].

• We develop a symbolic model checker to capture poten-

tial bugs residing in protocol state transitions. Those bugs are

abstracted as protocol property violations.

• We build a prototype of PROFACTORY and generate 8 pro-

tocols in Bluetooth and Zigbee. The evaluation demonstrates

that PROFACTORY can help to avert 82 known vulnerabilities

with low overhead in generated implementations.

2 Motivation

The increasing number of security issues in IoT protocol im-

plementation motivates secure protocol customization. Gener-

ally, those issues can be divided into two categories, message-

parsing vulnerabilities and state-transition errors. Next, we

use two examples (one for each category) to illustrate how

PROFACTORY can help avert them.

Motivating Example #1. This vulnerability (CVE-2017-

1000251) [8] resides in the L2CAP implementation of Linux

BlueZ (kernel 4.13.1 and older) and it was disclosed in the

Blueborne report [56], allowing a malicious Bluetooth user

to launch a denial-of-service or remote-execution attack. In

L2CAP, before data transmission, the two peers are required

to negotiate a group of connection options (or parameters) and

the negotiation is accomplished by exchanging two kinds of

messages, configuration request and configuration response.

If a configuration request from a peer cannot be accepted,

the peer has to send a second request based on the response

contents (e.g., copying the configurations indicated in the

response to the second request).

Figure 1 elaborates the buggy code and its official patch

(in blue) [9], where l2cap_config_rsp handles response

events and l2cap_parse_conf_rsp is for response parsing.

At Line 4171, a local 64-byte buffer buf is allocated to hold

the second request (as the previous request was pending, i.e.,

not accepted) and a loop (Line 3527–3537) is used to extract

information from the response and emit the request body,

where the parser invokes l2cap_add_conf_opt to append a

request option to buf. Before patching, since neither the re-

sponse size nor the buffer boundary is checked, an attacker can

craft a long response such that the buffer is overflowed when

the large number of configuration options in the response are

copied. From the perspective of protocol specification, the

reason for such a buffer-overflow vulnerability is that the pro-

tocol is actually under-specified. In particular, the developer

allocates 64 bytes (a magic number of bytes) for the request,

indicating that there must exist an upper bound for the re-

sponse size which is not explicitly respected by the emission

loop, causing the vulnerability. Fortunately, such specifica-

tion confusions can be eliminated by PROFACTORY in the

protocol modeling stage.

In our DSL, the option group is modeled as a parameter

list (see modeling details in Section 4), for which a max-

imum size must be specified. Hence, we have the upper-

bound check for the option group size. In addition, instead

of manipulating bare buffers, PROFACTORY performs all the

message-related operations on the well protected socket buffer

data structure sk_buff. This data structure allows conve-

nient field appending or truncating through skb_pull and

skb_put/skb_push, and the kernel intrinsically performs

all the needed boundary checks. Furthermore, the structure

always maintains the current data length and hence the size of

each message segment (e.g., the option group) can be strictly



3514 int l2cap_parse_conf_rsp(..., void *data, u16 *result) {
                                   (..., void *data, size_t size, u16 *result) {
3517     struct l2cap_conf_req *req = data;
3518     void *ptr = req->data;
              void *endptr = data + size;
              ...
3527     while(len >= L2CAP_CONF_OPT_SIZE) {
3528         len -= l2cap_get_conf_opt(...);
3529         switch(type) {
3530                 case L2CAP_CONF_MTU:
                              …
3537                     l2cap_add_conf_opt(&ptr, ...);
                              l2cap_add_conf_opt(&ptr, ..., endptr - ptr);

4137 static inline int l2cap_config_rsp(...) {
              ...
4161     switch (result) {
                  ...
4166         case L2CAP_CONF_PENDING:
                  ...
4171         char buf[64];
4172         len = l2cap_parse_conf_rsp(..., buf, &result);
                  len = l2cap_parse_conf_rsp(..., buf, sizeof(buf), &result);

2969 static void l2cap_add_conf_opt(void **ptr, ...) {
                                              (void **ptr, ..., size_t size) {
2970     struct l2cap_conf_opt *opt = *ptr;
2971  if (size < L2CAP_CONF_OPT_SIZE + len) return;
2972     opt->type = type;
2973     opt->len  = len;
2974     switch (len) {
2975         case 1:
2976             *((u8 *) opt->val)  = val;
2977             break;
              ...}
2999     *ptr += L2CAP_CONF_OPT_SIZE + len;

/net/bluetooth/l2cap_core.c

Figure 1: L2CAP configuration buffer overflow in BlueZ implementation
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Figure 2: Message loss in L2CAP information exchange

validated when unpacked. Overall, PROFACTORY rejects any

unspecified/invalid messages and offers secure message pars-

ing/construction.

Motivating Example #2. This example demonstrates a typ-

ical transition error in an asynchronous state machine. In

L2CAP, at the beginning of a connection, each peer can re-

quest information from the remote side in order to set up a

connection with the supported functionalities. The textual

specification of L2CAP simply mentions “L2CAP implemen-
tations shall respond to a valid information request with an
information response” [15] without much detail. Figure 2

presents two buggy asynchronous state machines for two

communicating devices A and B, respectively. In the state ma-

chines, the solid edges denote state transitions and the dashed

edges denote messages (to the other party). The problem lies

in that a device may undesirably drop requests when it is at

the info_start state. The buggy state machine requires the

device to first send a request before it can properly receive re-

quests from the other party. Initially, assume both devices are

in the info_start state and they both send out a request in

the same time. However, the two sends form a race. It is hence

possible that when the request from a remote peer arrives, the

local device is not in the next state that can receive the mes-

sage. This causes undesirable loss of messages. The user may

encounter difficulties in establishing a Bluetooth connection

due to the bug. This error is averted by performing the race-

free property checking in PROFACTORY (Section 6). The fix

is to allow devices to receive messages in info_start.

3 Approach Overview

Figure 3 presents the overall workflow of PROFACTORY. PRO-

FACTORY executes in three main phases: Protocol Modeling,

Code Generation and Automated Verification.

Protocol Modeling Phase. When creating a customized pro-

tocol, developers first need to model the protocol in PROFAC-

TORY’s DSL as the system input. The DSL, in a sense, is

de-facto a translator of protocol specifications. In this DSL,

all the protocol elements are abstracted as hierarchical data

types and each of those types would instruct PROFACTORY to

emit a unique set of concrete data structures and code blocks

in the following code generation phase. Therefore, modeling

a protocol in PROFACTORY corresponds to assembling def-

inition instances of those types. To enrich the language to

support various protocols, the design of the DSL syntax is

closely coupled with protocol semantics including message

format, FSM (finite state machine) and other protocol-specific

features. The DSL is embedded in Haskell, which offers an

easy-to-use development environment that allows manipulat-

ing its own syntax and facilitates implementing a DSL. We

will discuss the complete DSL design in Section 4.

Code Generation Phase. In this phase, PROFACTORY auto-

matically produces C code for a production kernel, according

to the input protocol model. The generated code consists of

type-based code blocks (i.e., protocol message data structure

definitions and message parsing/construction procedures) and

kernel shims which can assist seamless code insertion or re-

placement in a production kernel. In particular, the type-based

code blocks perform both message recognition and state tran-

sition, while kernel shims prepare standard socket interfaces

and the accesses to the underlying platform or lower-layer

protocols, requiring the hardcoded platform-dependent inter-

faces. As demonstrated in the first motivating example, the

lack of sanity checks is an important contributor to protocol

vulnerabilities, PROFACTORY hence enforces validity verifi-

cation on corresponding message fields when emitting code

for message parsing/building. The details of code generation

are elaborated in Section 5.

Automated Verification Phase. Protocol security issues in-

clude not only vulnerabilities incurred by field mishandling

in message parsing and problematic concurrent accesses to

shared information, but also correctness problems in the un-

derlying FSM. Therefore, PROFACTORY verifies the gener-

ated implementation through VCC [2, 52] (free from race

and deadlock) and Frama-C [17] (free from buffer overflow,

invalid pointer dereference, memory leakage, use after free

and double free). In Frama-C verification, limited manual
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Figure 3: The overall workflow of PROFACTORY (black arrow denotes data flow and red arrow denotes control flow)

intervention may be required to assist constructing proofs. In

addition, PROFACTORY also performs model checking for

the protocol state machine. We encode the protocol model

and perform property checking using the Z3 SMT solver [42].

We devise a set of general properties (i.e., transition, secu-

rity and customization properties) that should be respected

by a protocol state machine and validate them against pro-

tocols written in our DSL. Protocol models failing to pass

any of the verifications should be remodeled by developers.

There have been research efforts in protocol model check-

ing [24, 27, 28, 38, 44, 53], but the majority of them target

proving cryptographical correctness for AKA (authentica-

tion and key agreement) protocols or components of specific

protocols (e.g., TCP/IP), while the model checking in PRO-

FACTORY focuses on generic functional correctness (e.g.,

correct state transitions). Our work is therefore orthogonal

and complements existing work. This phase will be explained

in Section 6.

4 Protocol Modeling

In protocol specifications, message format and FSM are the

two building blocks. Hence, our DSL focuses on describ-

ing these two perspectives. To facilitate precise discussion,

we simplify and summarize the syntax of our DSL in Fig-

ure 4 and semantics in Figure 5. As illustrated in Figure 4,

a protocol can be represented by a set of abstract data types

related to message format, socket, and state machine. These

abstract types are further instantiated to concrete types when

describing individual protocols. Low level implementation is

automatically generated from the DSL specification. In the

following, we first explain the syntax and then the semantics

of the DSL, which are followed by an example.

4.1 DSL Syntax

Message Format. Most network messages have hierarchical

structure, meaning that a network message m is often the raw

data field of a message at a lower layer. It often has its own

structure too, encapsulating some message(s) at a higher layer.

Note that even the messages of a same protocol are organized

in multiple layers. For example, L2CAP command messages

are encapsulated in generic L2CAP messages. With such lay-

ered structures, the corresponding network message parsing

code largely follows a fixed pattern, namely, the parser for a

message m of a particular layer unfolds the structure at that

MESSAGE FORMAT RELATED ABSTRACT TYPES

Fix f ::= (nsize, nlow, nhigh)
Var v ::= (nlow, nhigh)
Hdr h ::= f+ · flen
Para p ::= (nkey, fkey · fval)
Plist � ::= (nsize, P (p))
Msg m ::= v |p | f+ |� | h ·msub | h · ( ftype = ntype ? : msub)

+

SOCKET RELATED ABSTRACT TYPES

Chan ch ::= (n∗key)

Conn cn ::= (n∗key)

STATE MACHINE RELATED ABSTRACT TYPES

State s ::= ntimeout
Recv r ::= (min, (e,sfrom, sto, (mout|ε), {S})+)
Send d ::= nact · (mout,(e, sfrom, sto, {S})+)
STATEMENT

S ::= S1;S2 | x := e
| if (e) {St} else {S f }

| for (x from e to e) {S} | iter (�,{S}) | ...

EXPRESSION

e ::= n | string | bool | x | � e | e⊕ e | ...

Figure 4: PROFACTORY DSL Syntax (n denotes an unsigned

integer constant and operator · denotes field concatenation)

level, checks some field that determines the (inner) message

type of the raw data field, and further invokes the correspond-

ing parser(s) of the inner message(s). This regularity allows

us to abstract network messages and message parsing to a set

of general abstract types that have hierarchical relations. An

example of abstracting L2CAP messages using our DSL can

be found later in the section.

We introduce 6 abstract types to describe (hierarchical)

message formats, two basic field types Fix and Var denoting

a fixed-sized field and a variable-sized field, respectively, and

four other types: Header Hdr, Parameter Para, Parameter List

Plist, and Message Format Msg that are built on the two basic

types. Besides, we provide two socket related abstract types

Conn and Chan to model network connections. We explicitly

model connection types to allow easy code generation for the

interface with the kernel.

Fixed-sized Field (Fix) A fixed-sized field consists of three

integer attributes, describing its size (nsize) and range (nlow and

nhigh). The size is measured in bytes. The range attributes (can

be nil) specify the lower and upper bounds of the field. This

could be further extended to support other value constraints.

The attributes allow safe code generation (with bound checks

and validity checks).

Variable-sized Field (Var) A variable-sized field represents a

byte sequence, with its size range specified by nlow and nhigh,



which enable mandatory bound checks in code generation.

Header (Hdr) A message header is a sequence of fields fol-

lowed by a length field, which is a dedicated fixed-sized field

describing the length of the following message content. Note

that we are defining an abstract type, which is further instan-

tiated to concrete types for a specific protocol. In general,

the fields in a header describe the meta information of a mes-

sage and instruct the parser to correctly extract and process

sub-messages. For example, a message header ftype · fid · flen
consists of three fields describing the type of the message

(that determines how the message body is interpreted), the

connection ID and the length of the body. Note that the op-

erator · denotes field concatenation. The length field is for

automatic generation of validity check.

Parameter (Para) A parameter (in message) consists of two

fields, a key field fkey and a value field fval. A parameter

abstract type consists of a constant nkey that uniquely iden-

tifies the parameter kind and the specifications of the two

fields. Parameters denote configurations that can be nego-

tiated across the peers of a connection. Intuitively, if the

value of the key field (at runtime) matches the constant nkey,

the parameter is of the corresponding type. For instance,

(2, (4,2,2) · (4,0,1024)) is an MTU (Maximum Transmis-

sion Unit) parameter type, with a static value nkey = 2 denot-

ing the type, the first key field 4 bytes long with a fixed value

of 2, and the second value field 4 bytes long with a value

in [0,1024]. At runtime, a concatenation of two fields (in a

message) is considered an MTU parameter when the first field

has the value of 2.

Parameter List (Plist) A parameter list denotes a variable set

of parameters (whose fkey sizes must be the same) with nsize
specifying the maximum number of parameters in it.

Message (Msg) A message could be a variable-sized field, pa-

rameter, sequence of fixed-sized fields, parameter list, header

followed by a sub-message, or header followed by multiple

possible sub-messages. The last two alternatives describe the

hierarchical structure of network messages. Specifically, in

the last alternative, field ftype is a field in the header h. When

it has the value of ntype, the sub-message is of the msub type.

Note that a concrete message type may have multiple sub-

message branches. PROFACTORY automatically generates

parsing code based on the specified hierarchy. An example

can be found later in the section.

Socket Related Types. In a production kernel, a protocol has

a socket-like interface that serves the applications. The inter-

face includes a number of socket peripheral data types such

as protocol connection Conn and protocol channel Chan. A

protocol may have multiple channels sharing an end-to-end

connection (for multiplexing). The abstract type of a con-

nection/channel consists of a list of static values nkey that

uniquely identify the parameters for the connection/channel.

The key values are a subset of the key values in parameter

type definitions. Sample parameters include device type for a

connection and MTU for a channel in L2CAP. Different from

other abstract types, PROFACTORY only allows one instantia-

tion for Conn and Chan, meaning that all the connections and

channels in a protocol have to be homogeneous.

State Machine. Protocol execution is largely driven by state

machines. In particular, besides message parsing, the other

focus of protocol implementation is to properly update state

machines. Upon receiving a message, protocol implemen-

tation parses the message, updates some state variable(s),

composes and sends a response message if needed. In some

cases, it performs side-effect operations such as logging criti-

cal events and collecting statistics. Although most protocols

follow the same execution model, their low level implementa-

tions have substantial diversity. For example, they may or may

not have explicit state variable(s); some protocols update state

variables before sending response whereas some others the

opposite. Our DSL leverages the inherent regularity of the ex-

ecution model to produce uniform implementation, enabling

security and easy verification. Our DSL allows developers to

specify protocol state machines, through three abstract types

State, Recv and Send.

Protocol State (State) A state type is defined by a constant

denoting the timeout of the state, which specifies the max-

imum time a state must be retained before a connection is

terminated if no legitimate connection activity is observed,

in case of idle/crashed applications and lost connections. To

specify a concrete protocol, the developer often needs to de-

fine multiple states. PROFACTORY pre-defines a number of

them including the start state sinit, and the end state st .

State Transition (Recv, Send) Recv specifies the state transi-

tion and the associated operations that are triggered by a re-

ceived message and Send specifies transitions and operations

triggered by a message-sending request. In Recv, min is the

received message, followed by a group of transition options.

Each option is guarded by an expression e. If the expression

is evaluated to true, a (compound) statement S is executed,

the state is updated from sfrom to sto. Meanwhile, a response

message mout may be sent. S typically includes invocation

of the receive function of the sub-message of min, creating

a channel/connection, setting/getting a parameter value, con-

structing mout, and collecting statistics. The syntax of Send
is similar with mout the message to send, but it specifies an

action type nact to express one of the only three socket oper-

ations, i.e., connection establishment, message delivery and

connection shutdown, that perform active message sending.

Note that socket errors (e.g., a message was not successfully

received/sent) get automatically handled by the state timeout

(see “Timer and Counter” in Section 5).

Statement and Expression. The syntax of statements and

expressions in our DSL largely follow the C language. State-

ments and expressions are mostly used in type definitions.

Different from a program in mainstream programming lan-

guages that often has a main() function that specifies the main

logic of a program, protocol code is event-driven, for instance,

by connection, send, and receive events. As such, in PROFAC-



TORY the main logic of a protocol is directly derived from

the type definitions, in the form of a list of event handlers

and functions called by these handlers. Statements and ex-

pressions are merely part of the type definitions such as e
and S in Recv and Send. PROFACTORY supports assignment,

if−else, for loop, constants, variables, common unary or

binary operations. In addition, it provides a number of state-

ments convenient for network protocols. For instance, iter
executes statement S on each element in a parameter list �.

4.2 DSL Semantics
Figure 5 presents the semantics of a subset of DSL specifica-

tions, with the data structures and auxiliary functions used,

followed by the rules. Different from a regular programming

language, in which each statement has concrete semantics,

our DSL is mainly for type definitions. As such, we define

semantic rules for concrete type definitions. In the semantic

rules section of Figure 5, the first column shows concrete type

definitions and the corresponding semantic rules in the sec-

ond column show a list of functions and symbolic constraints

derived from the definition. The functions define a list of op-

erations for a concrete type. Some of the functions are event

handlers that constitute the interface of protocol. The sym-

bolic constraints are used for symbolic modeling checking

that validates the correctness of protocol specifications.

Specifically, for a type definition, PROFACTORY updates

F, which denotes the list of functions defined, and P, which

denotes the list of symbolic constraints derived. Inside a func-

tion, the semantics is described using C-like statements, many

of which update a store σ that is similar to a store in classic

programming language semantics. Intuitively, one can con-

sider it as a hash-map that projects a key or a number of keys

to some value. Here, key can be a name, a value, or a variable.

Rule 1 specifies that for a definition of fixed-sized field, two

functions are introduced, with f .parse(M,V ) parses the field

and f .compose(V,x) composes the field (as part of whole

message composition). In the parser function, parameter M is

a handler for the message (kind of id for the message). One

can intuitively consider each incoming message (to parse) has

its unique handler; V is a buffer passed in from the kernel,

containing the message (or part of a message). The function

copies ns (i.e., the size of the field) bytes from V to the store.

Note that the concrete field value is indexed by the handler

M and the symbolic field name f . This is because f is a field

type instead of a concrete field. In the composition function,

variable x denotes the value used to compose the field and

V is the buffer storing the message to compose. V will be

passed on to the kernel to send a message after composing the

whole message. In addition to the functions, three symbolic

constraints are added to P dictating that the (symbolic) length

of the field is equal to ns, and the (symbolic) value of the field

must be in between nl and nu. These constraints will be used

for model checking. The semantics for a variable-sized field

definition is similar.

In Rule 3 for a header consisting of two fields f1 and flen
(for message body length), the parser function parses the two

fields in order by invoking their parser functions. This implies

that the two field types need to be defined. The expression

V [ f1.len, ] means that a sub-buffer starting at offset f1.len of

V . The composition functions copies the two variables x1 and

xlen to the result buffer. The symbolic constraint dictates that

the length of header be the sum of the lengths of both fields.

In Rule 4 for a parameter, the parser function parses the

two fields and asserts that the value of the key field must be

equal to the specified key value nkey. A global function, i.e., a

function not specific to a definition, setPara(xc,xk,xv) is also

introduced to set a parameter, with xc denoting the connec-

tion/channel, xk the key, and xv the value. It sets the parameter

denoted by the value of xk to the value of xv. It will be invoked

when connections/channels are created/configured.

In Rule 5 for a parameter list, the parser function traverses

through the buffer V and parses individual parameters until it

reaches the end of V or the number of parameters reaches the

upper bound ns. The last symbolic constraint requires that the

parameters (in the list) have the same key field size. Note that

strlen(V ) means the dynamic length of buffer V which is not

null-terminated.

In Rule 6 for a message with two possible sub-message

formats, the parser function first parses the header. It then

checks the value of the type field ft in the header and invokes

the parser of the corresponding sub-message (“?:” is similar

to “switch-case”). The composition function is symmetrically

defined, with xt the type of the sub-message, Vsub a buffer

containing the sub-message composed before-hand, and xl the

length of the sub-message. The symbolic constraints ensure

that (1) the value of the type field must be nt1 or nt2; (2) if it

is nt1/nt2, the message length is the sum of the header and the

sub-message mt1/mt2 and the value of the length field flen in

the header must match the length of mt1/mt2.

In Rule 7 for a channel definition, two global functions

are introduced. The first one is to create a new channel, with

xc denoting the connection to which the channel belongs,

xaddr the address of the channel, and x1, x2 the values for the

channel parameters n1 and n2. Inside the function, a new local

channel id is created to uniquely represent the new channel.

The state of the channel is set to sinit and the list of channels for

the connection is updated. Some protocols explicitly specify

channel id in their messages so that they can be properly

attributed. However, there are protocols that implicitly encode

channel id in some parameter(s). For example, L2CAP may

encode channel id in PSM (Protocol Service Multiplexer). As

such, we provide a findChanByPara() function to help look

up a channel in connection xc, using the parameter key xk and

value xv. It returns the reference to the found channel or NULL.

In Rule 8, the creation function of connection is similarly

defined. The list of channels is initialized to empty.

Rule 9 specifies the semantics for the definition of a Recv
state transition, which leads to the definition of a receive()



Data Structures and Auxiliary Functions
σ : store that maps key(s) to a value; F : functions defined; P : symbolic constraints; Chcur : the current channel;

sinit : the initial connection state

newId(): acquire a new connection or channel id; newMsgHandler(): acquire a message handler (like a file handler)

Semantic Rules

1. f :=Fix (ns, nl , nh) F+=

{
def f .parse(M,V ) {σ[M][ f ] =V [0,ns];},
def f .compose(V,x) {V [0, f .len−1] = σ[x];}

}
P+=

{
f .len = ns, f .val ≤ nh,
f .val ≥ nl

}

2. v:=Var (nl , nh) F+=

{
def v.parse(M,V,xl) {σ[M][v] =V [0,σ[xl ]−1];},
def v.compose(V,xl ,xv) {V [0,σ[xl ]−1] = σ[xv];}

}
P+= {v.len ≤ nu, v.len ≥ nl}

3. h:=Hdr f1 · flen
F+=

⎧⎨
⎩

def h.parse(M,V ) {
f1.parse(M,V );
flen.parse(M,V [ f1.len, ]);}

def h.compose(V,x1,xlen) {
V [0, f1.len−1] = σ[x1];
V [ f1.len, f1.len+ flen.len−1] = σ[xlen];}

⎫⎬
⎭

P+= {h.len = f1.len+ flen.len}

4. p:=Para (nkey, fkey · fval)
F+=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

def p.parse(M,V ) {
fkey.parse(M,V );
assert(σ[M][ fkey]≡ nkey);
fval.parse(M,V [ fkey.len, ]);},

def setPara(xc,xk,xv) {
switch(xk) {

case nkey : σ[σ[xc]][nkey] = σ[xv];
...}

}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

P+= {nkey = fkey.val, p.len = fkey.len+ fval.len}

5. l := Plist(ns,P ({
p1 := (nk1, fk1 · fv1),
p2 := (nk2, fk2 · fv2)})

F+=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

def l.parse(M,V ) {
while(i < ns && j < strlen(V )) {
switch(V [ j, j+ fk1.len−1]) {
case nk1 : p1.parse(M,V [ j, ]); j+= p1.len
...

},

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

P+= {l.len = p1.len+ p2.len, fk1.len = fk2.len}

6. m := Msg(h := ft · flen)·
( ft = nt1 ? : mt1 |
ft = nt2 ? : mt2)

F+=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

def m.parse(M,V ) {
h.parse(M,V );
if(σ[M][ ft ]≡ nt1)

mt1.parse(M,V [h.len, ]);
if(σ[M][ ft ]≡ nt2);

mt2.parse(M,V [h.len, ]);},

def m.compose(V,xt ,Vsub,xl) {
if(σ[xt ]≡ nt1) {

h.compose(V,nt1,xl);
V [h.len,h.len+ xl −1] =Vsub;

}
...

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

P+= {nt1 = ft .val ∨nt2 = ft .val, ft .val = nt1 → (m.len = h.len+mt1.len∧ flen.val = mt1.len),
ft .val = nt2 → (m.len = h.len+mt2.len∧ flen.val = mt2.len)}

7. ch:=Chan (n1, n2) F+=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

def createChan(xc,xaddr,x1,x2) {
id = newId(); σ[id][addr] = σ[xaddr]; σ[id][n1] = σ[x1]; σ[id][n2] = σ[x2];
σ[id][state] = sinit; σ[σ[xc]][channels]+ = {id}; ret id;}

def f indChanByPara(xc,xk,xv) {
foreach (id ∈ σ[σ[xc]][channels])
if (σ[id][σ[xk]]≡ σ[xv]) ret id;}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

8. cn:=Conn (n1, n2) F+=

⎧⎨
⎩

def createConn(x1,x2) {
id = newId(); σ[id][channels] = {}; σ[id][n1] = σ[x1]; σ[id][n2] = σ[x2];
ret id;}

⎫⎬
⎭

9. r := Recv (min, (e1,sfrom,
sto, mout, {S}),(e2, ...))

F+=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

def r.receive(V ) {
M = newMsgHandler();
min.parse(M,V );
if (e1) { S; assert(σ[Chcur][state]≡ sfrom); σ[Chcur][state] = sto;

mout .compose(V, ...); send(V );}
if (e2) ... }

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

P+= {(e1 ∧ state = sfrom)→ state = sto, e2...}

Figure 5: PROFACTORY DSL Semantics



T20

cmdHdr
dstChanID

confReqHdr optPlist
connection request
configuration request

mtuType = Fix (1size  , 10low , 10high)
mtuVal = Fix (2size , 16low , 1024high)
mtuPara = Para (10key , mtuType · mtuVal)
optPlist = Plist (8size , {mtuPara, …})
srcChanID = Fix (2size , 1low , 65535high)
confReqHdr = Hdr srcChanID · ...
l2Psm = Fix (1size , 1low , 23high)
l2PsmType = Fix (1size , 2low , 2high)
l2PsmPara = Para (2key , l2PsmType · l2Psm)
dstChanID = Fix (2size , 1low , 65535high)
dstChanIDType = Fix (1size , 1low , 1high)
dstChanIDPara = Para (1key , dstChanIDType · dstChanID)
cmdType = Fix (1size , 1low , 22high)
cmdHdr = Hdr cmdType · ...
l2Chan = Chan (…, 1key, 2key, 10key, …)
l2Conn = Conn (…)

T01
T02
T03
T04
T05
T06
T07
T08
T09
T10
T11
T12
T13
T14
T15
T16

msgConfReq = Msg confReqHdr · optPlist
msgConfRsp = Msg ... · optPlist
msgConnReq = Msg l2Psm · dstChanID
msgConnRsp = Msg ...
msgL2Cmd = Msg cmdHdr · (cmdHdr->cmdType = 2?: msgConnReq | cmdHdr-
>cmdType = 4?: msgConfReq | ...)
BT_CONFIG = State 2000timeout
BT_CONNECTED = State 2000timeout
recvConnReq = Recv (msgConnReq, 
(e, nil, BT_CONFIG, msgConnRsp, {S}), ...)
e: findChanByPara(l2Conn, 2key, msgConnReq->l2Psm) 
&& !findChanByPara(l2Conn, 1key, msgConnReq->dstChanID)
S: createChan(l2Conn, …, msgConnReq->dstChanID, msgConnReq->l2Psm);...

T17
T18
T19
T20
T21

T22
T23
T24

T25

T26

recvConfReq = Recv (msgConfReq,
(e, BT_CONFIG, BT_CONNECTED, msgConfRsp, {S}), ...)
e: findChanByPara(l2Conn, 1key, msgConfReq->msgConfReqHdr->srcChanID)
S: iter(msgConfReq->optPlist, {
           setPara(l2Chan, 10key, msgConfReq->optPlist->mtuPara);
           append(msgConfRsp->optPlist, 10key, l2Chan->mtuPara);...

T27

T28
T29
T30
T31

BT_START BT_CONFIG BT_CONNECTED

static inline void l2cap_sig_channel(..., 
struct sk_buff *skb) {
    ...; u8 *data = skb->data; ...
    struct l2cap_cmd_hdr cmd;
    int err; ...
        err = l2cap_bredr_sig_cmd(..., 
&cmd, ..., data); ...

5696

5700
5702
5703
5726

static inline int l2cap_bredr_sig_cmd(..., struct 
l2cap_cmd_hdr *cmd, ..., u8 *data) {
    int err = 0;
    switch (cmd->code) { ...
        case L2CAP_CONN_REQ:
            err = l2cap_connect_req(..., cmd, ..., data);
            break; ...
        case L2CAP_CONF_REQ:
            err = l2cap_config_req(..., cmd, ..., data);
            break; ...

5329

5333
5335
5340
5341
5342
5349
5350
5351

static struct l2cap_chan *l2cap_connect( ..., struct 
l2cap_cmd_hdr *cmd, u8 *data, ...) {
    struct l2cap_conn_req *req = (struct 
l2cap_conn_req *) data;
    struct l2cap_conn_rsp rsp;
    struct l2cap_chan *chan = NULL, *pchan;
    int result, ...;
    u16 ..., scid = __le16_to_cpu(req->scid);
    __le16 psm = req->psm; ...
    pchan = l2cap_global_chan_by_psm(..., psm, 
...); ...
    if (__l2cap_get_chan_by_dcid(..., scid)) ...
    chan = pchan->ops->new_connection(pchan); ...
    __l2cap_chan_add(..., chan);
            l2cap_state_change(chan, BT_CONFIG); ...
    l2cap_send_cmd(..., sizeof(rsp), &rsp); ...

3762

3766

3767
3768
3769
3771
3772
3777

3798
3801
3820
3841
3870

static inline int l2cap_config_req(..., struct 
l2cap_cmd_hdr *cmd, ..., u8 *data) {
    struct l2cap_conf_req *req = (struct 
l2cap_conf_req *) data;
    u16 dcid, ...; u8 rsp[64]; struct l2cap_chan *chan;
    int len, ...; ...
    dcid  = __le16_to_cpu(req->dcid); ...
    chan = l2cap_get_chan_by_scid(..., dcid); ...
    if (chan->state != BT_CONFIG && ...) ...
    len = l2cap_parse_conf_req(..., rsp, sizeof(rsp)); ...
    l2cap_send_cmd(..., L2CAP_CONF_RSP, ..., rsp); ...
        l2cap_chan_ready(chan)

4028

4032

4033
4036
4041
4046
4052
4080
4087
4106

static int l2cap_connect_req(..., struct 
l2cap_cmd_hdr *cmd, ..., u8 *data) {...
    l2cap_connect(..., cmd, data, ..., ...); ...

3897

3912

static void l2cap_chan_ready(struct 
l2cap_chan *chan) {
    if (chan->state == BT_CONNECTED) return; ...
    chan->state = BT_CONNECTED; ...

1245

1251
1261

static int l2cap_parse_conf_req(..., void *data, size_t 
data_size) {
    struct l2cap_conf_rsp *rsp = data;
    void *ptr = rsp->data,         ...;
    int len = chan->conf_len, type, ...; ...    
    while (len >= L2CAP_CONF_OPT_SIZE) {
        len -= l2cap_get_conf_opt(..., &type, ...); ...
        switch (type) {
            case L2CAP_CONF_MTU: ...
            break; ...
        l2cap_add_conf_opt(&ptr, L2CAP_CONF_MTU, ...); ...

3298

3300
3301
3304
3316
3317
3322
3323
3325
3418

T21

T14

T21
T24

T21
T27

T19

T05

T07

T25
T25

T26

T22, 24

T23, 27

T17

T18
T05

T28
T27

T27

T18

T04

T01T30

T31

(a). Code snippets from l2cap_core.c for BT5.0 in Linux kernel 4.10

(b). Domain specific definitions (T), L2CAP message formats and part of L2CAP state machines 

T29

(i)

(ii)

T13

l2Psm

Figure 6: A running example of modeling a subset of Bluetooth L2CAP specifications

function. If the message min is a top level message, the func-

tion is invoked by another protocol at the lower layer. Oth-

erwise, it is invoked by the receive functions of higher level

messages. Inside the function, a handler is first allocated to

denote the message. One can intuitively consider it as an id.

Message min is then parsed. If the expression e1 is satisfied,

statement S is executed; the state is updated from sfrom to sto;

a response message is composed and sent. Similarly, if the

expression e2 is satisfied, a different transition is performed.

The symbolic constraint specifies the possible state transitions.

The semantics for Send is similarly defined and elided.

4.3 A Real-world Example

In the Bluetooth protocol stack, L2CAP is one of the most

critical protocols, responsible for protocol multiplexing and

data delivery between applications and the protocol stack. It

sits on top of the HCI (Host Controller Interface) layer (i.e., a

link layer) and serves a large number of upper layers such as

RFCOMM (Radio Frequency Communication), HIDP (Hu-

man Interface Device Profile), and BNEP (Bluetooth Network

Encapsulation Protocol). Figure 6 (a) shows a few simplified

code snippets from a Linux Bluetooth 5.0 implementation.

They are to handle L2CAP command messages.

Function l2cap_sig_channel is invoked by a callback

from the lower HCI layer to process a L2CAP command. De-

pending on the command type (Line 5335) in the command

header (Line 5702), it invokes function l2cap_connect_req

to process a connection request or l2cap_config_req to

process a configuration request. Inside l2cap_connect, Line

3777–3820 leverage the PSM (protocol service multiplexer,

like port for TCP) field to look up a parent channel listen-

ing to this kind of service request. If there is such a chan-

nel and no existing channel is using the requested source

channel ID (Line 3771, 3798), it spawns and initializes a

new L2CAP channel (the channel is initialized to the initial

BT_START state, which is not explicitly shown in the snip-

pets). It then sets the channel to BT_CONFIG state, and uses

l2cap_send_cmd which is a wrapper API of the lower HCI

layer to send a response message (Line 3841–3870). Inside

l2cap_parse_conf_req, the loop in Line 3316–3325 tra-

verses a list of configuration options. For example, it sets the

MTU of the channel if an mtu option is included (Line 3323).

Inside l2cap_config_req, a configuration request cannot

be accepted/parsed unless the channel is at BT_CONFIG state

(Line 4052). After parsing, it sends a response message and

sets the channel to the ready state BT_CONNECTED (if the con-

figuration is successful, Line 1251–1261).

Using our DSL, we can rewrite the complex implemen-

tation (hundreds of LOC) to 31 LOC in DSL as shown in

Figure 6 (b). We use yellow, blue and green in (a) and (b)

to mark artifacts related to L2CAP commands, connection

requests, and configuration requests, respectively. We also use

circled annotations in (a) to associate concrete variables and

operations to abstract types in (b). For example, u8∗data
at Line 5700 is abstracted to Line T21, meaning that it is a

L2CAP command message whose header directs the parsing

to different commands. The corresponding message formats

and state machine are shown in Figure 6 (b.i, b.ii).

5 Code Generation

PROFACTORY automatically generates C code from the DSL

specification. The semantic rules in Figure 5 specify the func-

tions we need to generate and the semantics of these functions.

However, those functions are still abstract. In this subsection,



we discuss how the concrete C code is generated.

Specifically, each type definition in a protocol specification

leads to a C data structure. For example, a header type defini-

tion h := Hdr ftype · flen leads to a C data structure definition

“typedef struct {... ftype ...; flen ...;} h;”. Functions like those

described in the semantic rule of the type definition are gener-

ated. For the above header example, the two functions in Rule

3 in Figure 5 are generated. Hash-map operations through

the store, e.g., σ[M][ ftype], are compiled to the corresponding

data structure field accesses.

Sanity Checks An important advantage of PROFACTORY is

that it ensures parser security by inserting bounds checks

and input validity checks. Note that the length of each field,

header, message is clearly specified in our DSL. If necessary,

value ranges are also specified. Runtime checks like those in

the symbolic constraints set P (derived while compiling the

protocol specification) are automatically inserted.

Multiplexing PROFACTORY supports multiplexing which en-

tails concurrent connections. To avoid races, PROFACTORY

automatically adds mutexes to guard accesses to data struc-

tures involved in multiplexing, such as the channel list field

in a connection data structure, the current connection/channel

variable, and connection/channel parameter data structures.

Packet Fragmentation Developers are oblivious to the imple-

mentation details of packet fragmentation. They only need to

specify how the MTU value is negotiated as part of the pro-

tocol specification. To support fragmentation, PROFACTORY

automatically inserts an additional fragmentation header (in-

cluding fragment ID, offset and continuation flag) into the

header of each message and the fragmentation logic is injected

in message send/receive functions.

Timer and Counter PROFACTORY does not customize timer

or counter constructs. Instead, it leverages the generic ker-

nel socket timer sk_sndtimeo (40s is a reasonable timeout

value) for message sending, and the delayed callback registra-

tion schedule_delayed_work() (value is set by the timeout

attribute of State) for message receiving, where the timeouts

trigger the close of sockets. They are transparent to develop-

ers, and they are automatically generated for Recv and Send.

Cryptographic Operations Modeling cipher suites is out of

the scope of our DSL, while cryptographic constructs are

packed into prepared interfaces. Specifically, PROFACTORY

offers two expressions setSec(int) and getSec() (omitted in

Figure 4 for brevity) for security level setting and fetching.

setSec(int) sets the security level to a predefined integer

value, which indicates whether the protocol performs encryp-

tion/decryption. The lower-layer protocol checks the setting,

establishes the corresponding lower-layer connection and de-

livers messages. The lower-layer of the other communication

peer updates this security level after the lower-layer connec-

tion is established, but this is oblivious to the upper-layer. If

the other peer wants to know what security level the commu-

nication operates on, it should explicitly check it by using

getSec(). Developers are oblivious to the implementation de-

tails of those interfaces but only regard them as cryptographic

delegating pipes of the lower-layer. For instance, L2CAP en-

closes a security level sec_level in the channel data structure,

and the lower-layer (HCI) accesses this value for encryption

jurisdiction when performing message delivery. NWK main-

tains nwkSecurityLevel in NIB (Network Information Base),

and the lower-layer (MAC) accesses this value to apply corre-

sponding security strategies.

Interfacing with Application, Kernel and Other Protocols
While our DSL is platform-independent, allowing to specify

the main logic of network protocols, the generated code

has to be platform dependent, interfacing with four parties:

user space applications, the underlying kernel, lower layer
protocol and upper layer protocol(s). PROFACTORY currently

supports Linux. The generated implementation for a protocol

is packaged as a Linux kernel module. In the following, we

explain the four interfaces. Then we present an example.

All network protocols in Linux interface with user appli-

cations through the socket interface, which includes socket

data structure and a number of API functions such as bind(),
listen(), accept(), connect(), send() and recv(). To setup the

user space interface, the kernel module initialization needs

to register the protocol by providing the protocol name such

as “L2CAP” and the socket data structure of the protocol (con-

taining a reference to a channel data structure). It also reg-

isters a list of functions implementing the aforementioned

APIs, e.g., l2cap_sock_sendmsg() is registered for send()
and sendmsg(). According to the action type nact , connect(),
send()/sendmsg() and shutdown() are connected to the mes-

sage sending functions emitted through Send instances. This

is transparent to developers. The user space send() and recv()
functions are merely sending and receiving raw data such that

the underlying protocol is completely transparent to them.

The generated code interfaces with the upper layer proto-

cols through a provided callback function. Theoretically, such

functions can be registered. However, the current Linux pro-

tocol stack implementation hardcodes them. For example, the

callback function provided by the Bluetooth family to L2CAP

for raw data delivery has a fixed name l2cap_data_recv(),
which is invoked inside the body of mdata.recv() that receives

an L2CAP data message. Note that invoking the actual call-

back is transparent to developers but they only need to write a

deliver expression (omitted in Figure 4 for brevity) to fulfill

this. The interface with the lower layer protocol is similar.

Upon receiving a data message in the lower layer (addressing

our protocol), a fixed function is invoked that further invokes

the various parser functions generated from DSL. Developers

are also oblivious to the connection between the callback and

the generated parser functions. The generated code also makes

use of kernel functions such as socket allocation sk_alloc()
when creating new channels, to which the developers are

oblivious. An example can be found in Appendix A.

Code Generation Algorithm The algorithm of code gen-

eration is simplified and summarized in Algorithm 1. First,



data structures are emitted to compose a header file (Line

1–8). Note that the emission of some fields (e.g., timer, state,

linked list, mutex and lock) in channel and connection struc-

ture is transparent to developers, and PROFACTORY leverages

those fields to fulfill state transitions and multiplexing. Then,

f indChanByPara function is generated for each of the pa-

rameters defined in the channel structure (Line 9–11), and

createChan and createConn are also emitted (Line 12–13),

where concurrency control operations are included. For each

message containing a header, a parser is generated to extract

(skb_pull) the header (Line 16–17), perform sanity checking

(Line 18) and invoke an inner parser (Line 19), composing

a hierarchical parsing tree. Similarly, a hierarchical message

constructor (Line 23–24) is generated to set header fields (e.g.,

length field). In contrast, a receiving transition defines the

parser of a base message (leaf parsing node) without a header.

Similarly, it extracts all the fields (Line 28–29) and performs

sanity checking (Line 30). In addition, it allocates memory

(Line 32), prepares (skb_put) local references (Line 33–34),

conducts the concrete state transition (Line 37–38), and per-

forms packet delivery (Line 39) for the outgoing message (if

applicable). In particular, the optional header argument [h]
in Line 19 only applies to the parser of base message, which

is reflected in Line 27. This design aims to handle message

formats where the innermost content parsing involves the in-

formation of the adjacent header. Finally, a sending transition

defines a message serializer which is almost the same as the

construction of the outgoing message in a receiving transition,

but the only difference is that it is allowed to carry a user-

space data chunk passed through a socket sending function

(Line 46, 56). Note that the recursive code generation of ex-

pressions/statements, and the channel/connection unlocking

operations at the end of parsing are omitted for brevity.

6 Automated Verification

An important goal of PROFACTORY is to achieve correctness

and security by construction. The goal is validated by auto-

mated verification, which includes the following three aspects:

verifying concurrency control correctness using VCC [2, 52],

memory safety using Frama-C [17], and state-machine cor-
rectness using Z3 [42]. Note that bugs in any of these aspects

could lead to security exploits. We use different tools for the

three aspects as they have different focuses. For example,

VCC was designed to prove concurrency correctness and has

limited support for type/pointer casting, whereas Frama-C

was designed to prove memory safety and can hardly reason

about concurrent program behaviors. Z3 is a general rea-

soning engine, and hence very suitable for reasoning about

high-level state machine behaviors. The inputs to the first

two are C-like functions that can be automatically emitted by

PROFACTORY. However, as in most verification systems, the

proof process may require developers’ manual intervention,

e.g., providing a small number of additional pre-conditions

Algorithm 1: Code Generation Algorithm

Def. :H,P,M,R,D - sets of defined headers, defined parameters,
defined messages, defined receiving transitions and defined
sending transitions

:structGen - generate data structures
: localGen - generate local pointers
:extractGen - refer pointers to socket buffer data
:checkGen - generate sanity check block
:allocGen - generate socket buffer allocation block
:baseMsg - get message base of a layered message
:timerGen - generate timer updating block
:sendGen - generate message delivery block
:codeGen - generate type-specific block

1 foreach h ∈ H do
2 structGen(h) � packed data structure
3 end
4 foreach p ∈ P do
5 structGen(p) � packed data structure
6 end
7 structGen(ch)
8 structGen(cn) � end of header file generation
9 foreach p ∈ ch do

10 codeGen(p) � generate f indChanByPara
11 end
12 codeGen(ch) � generate createChan
13 codeGen(cn) � generate createConn
14 foreach m = h( f = n1? : m1)... ∈ M do
15 codeGen(m) = define parse_m(ch,cn,skb_in){
16 localGen(h)
17 extractGen(h)
18 checkGen(h) � failure is directed to drop
19 if( f == n1) return parse_m1(ch,cn, [h],skb_in);
20 ...
21 else goto drop;
22 drop: k f ree_skb(skb_in); return error;}
23 + define compose_m(ch,cn,skb_out){
24 compose_m1(ch,cn,skb_out); ...} � details omitted
25 end
26 foreach r ∈ R do
27 codeGen(r) = define

parse_baseMsg(min)(ch,cn,hprev,skb_in){
28 localGen(baseMsg(min))
29 extractGen(baseMsg(min))
30 checkGen(baseMsg(min)) � failure is directed to drop
31 if(codeGen(e1)∧ ch � state == s f1 ){
32 allocGen(mout) � failure is directed to drop
33 localGen(mout)
34 extractGen(mout)
35 codeGen(S)
36 compose_mout(ch,cn,skb_out);
37 (ch � state)← st1
38 timerGen(st1 )
39 sendGen(mout)}
40 ...
41 else goto drop;
42 return success;
43 drop: k f ree_skb(skb_in); k f ree_skb(skb_out); return error;}
44 end
45 foreach d ∈ D do
46 codeGen(d) = define send_mout(ch,cn,data, len){
47 allocGen(mout) � failure is directed to drop
48 localGen(mout)
49 extractGen(mout)
50 if(codeGen(e1)∧ ch � state == s f1 ){
51 codeGen(S)
52 (ch � state)← st1
53 timerGen(st1 )}
54 ...
55 else goto drop;
56 if(data∧ len)memcpy(skb_put(skb_out, len),data, len);
57 compose_mout(ch,cn,skb_out);
58 sendGen(mout); return success;
59 drop: k f ree_skb(skb_out); return error;}
60 end



and/or loop invariants. The input to Z3 is a set of symbolic

constraints derived by interpreting the DSL specification (i.e.,

P in Figure 5).

Concurrency Control Correctness. In generated code, con-

currency control takes place in connection multiplexing oper-

ations, where multiple channels share common information.

The verification aims to ensure accesses to such common

information do not cause races or deadlocks. During code

generation, PROFACTORY also emits code that is amenable

for VCC. Particularly, it makes the code self-contained by pro-

viding mock data structures and API functions, and replaces

mutex operations with VCC-specific lock acquisition and re-

lease. With the annotations of the shared data structures, VCC

automatically determines concurrency correctness. Figure 7

illustrates an example of this procedure. The code snippet in

(a) presents a function generated by PROFACTORY that up-

dates the mtu field of a channel indexed by a channel id cid.

Observe that a lock is acquired at Line 4 before accessing the

list of channels and then released at Line 10. The channel is

further locked at Line 12 and then released at Line 14 after

updating the mtu field. The snippet in (b) shows the corre-

sponding version for VCC verification with those in green

being VCC-specific keywords declaring shared objects and

auxiliary objects. The tags show the correspondences of the

mutex operations in (a) and (b). VCC then proves that the

code in (b) is race-free and deadlock-free. Details of VCC are

not the focus of our work and hence elided. Interested readers

are referred to [2].

Memory Safety. Frama-C verification requires per-function

code annotations written in its own ACSL specification lan-

guage [17]. Most such annotations (e.g., pointer validation,

memory span validation, memory span separation, loop vari-

ant and loop invariant) can be generated by PROFACTORY,

but due to the difficulty in automatically producing the com-

plete set of annotations, developers may need to manually

insert additional (very limited) preconditions and/or loop in-

variants to assist the verification process. All the kernel data

structures (e.g., sk_buff) and their operations are manually

pre-simplified (one-time effort) as they are not supported.

The verification excludes memory access vulnerabilities, i.e.,

buffer overflow, invalid pointer dereference, memory leak-

age, use after free and double free. In particular, being free

from buffer overflow and invalid pointer dereference are de-

ductively verified, where intermediate targets such as being

free of infinite loop, integer overflow/underflow and dividing

by zero are also guaranteed, while Frama-C guarantees be-

ing free of memory leakage, use after free and double free

by tracking memory allocation/deallocation operations. Fig-

ure 8 showcases a generated function with Frama-C annota-

tions. The function iterates a parameter list stored in skb_in,

where the lines highlighted in green are the annotations. It

was successfully verified by Frama-C. Specifically, the an-

notations consists of two parts, function annotations (Line

21–28) and loop annotations (Line 34–44). The former de-

static int parse_config(int cid, int mtu, ..., 
struct conn* pconn) {
  struct chan* pchan = NULL;
  mutex_lock(conn->list_lock);
  pchan = pconn->chan_list;
  while(pchan){
    if(pchan->cid == cid) break;
    pchan = pchan->next;
  }
  mutex_unlock(pconn->list_lock);
  if(!pchan) return CHAN_NOT_EXIST;
  mutex_lock(pchan->lock);
  pchan->mtu = mtu;
  mutex_unlock(pchan->lock);
  return SUCCESS;
}

01
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16

(a)

static int parse_config(int cid, int mtu, ... _(ghost \claim c))
  _(always c, (&ChanDataListContainer)->\closed)// channel 
list must not be claimed
  _(requires cid > 0)
{
  CHAN_DATA* pchan = NULL;
  _(assume \thread_local(pchan))// thread-local assumption
  Acquire(&ChanDataListLock _(ghost c));// claim list lock
    _(unwrapping &ConnData.ChanDataList)// enable access
    _(writes pchan)
      {
          pchan = ConnData.ChanDataList;
          while(pchan) {
              if(pchan->cid == cid) break;
              pchan = pchan->next;
      }
} ...
  Release(&ChanDataListLock _(ghost c));// release list lock
  _(ghost \claim d = \make_claim({&ChanDataContainer}, 
(&ChanDataContainer)->\closed);)
  Acquire(&ChanDataLock _(ghost d));// claim channel lock
    _(unwrapping &ChanData)// enable access
    _(writes \span(pchan))
      {
        pchan->mtu = mtu;
      }
  Release(&ChanDataLock _(ghost d));// release channel lock
...}
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(b)
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Figure 7: Concurrency correctness for updating a channel

#define H_CONF_SIZE 8
#define P_OPT_SIZE 4
#define PL_MAX_CONF_SIZE 8
struct sk_buff {
    int len;
    char* data;
    ...
};
struct conf {
    int conf_type;
    unsigned int len;
}__attribute__((packed));
struct opt {
    unsigned int optVal;
}__attribute__((packed));
struct chan {
    int mtu;
    int fcs;
    ...
};
/*@ requires ArgReq: \valid(pchan) && 
\valid(skb_in);
  @ requires SkbReq: skb_in->len >= 0 && \
valid(skb_in->data + (0..skb_in->len));
  @ requires SeparationReq: \
separated((char*)pchan + (0..sizeof(struct chan)), 
(char*)skb_in + (0..sizeof(struct sk_buff)), skb_in-
>data + (0..skb_in->len));*/
static int parse_config(struct chan* pchan, struct 
sk_buff* skb_in) {
    int iter_cnt = 0;
    struct conf* conf_hdr = 0;
    struct opt* opt_para = 0;
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    /*@ loop invariant \valid(skb_in);
      @ loop invariant \valid(pchan);
      @ loop invariant skb_in->len >= 0;
      @ loop invariant \valid(skb_in->data + (0..skb_in-
>len));
      @ loop invariant iter_cnt <= PL_MAX_CONF_SIZE;
      @ loop invariant \separated((char*)pchan + 
(0..sizeof(struct chan)), (char*)skb_in + 
(0..sizeof(struct sk_buff)), skb_req->data + (0..skb_in-
>len));
      @ loop variant skb_in->len;*/
    while(skb_in->len > H_CONF_SIZE && iter_cnt < 
PL_MAX_CONF_SIZE) {
        conf_hdr = (void*)skb_in->data;
        skb_in->data += H_CONF_SIZE;
        skb_in->len -= H_CONF_SIZE;
        if(conf_hdr->len > skb_in->len || conf_hdr-
>len != P_OPT_SIZE) goto drop;
        opt_para = (void*)skb_in->data
        if(con_hdr->conf_type == 1) {
                chan->mtu = opt_para->optVal;}
        else if(con_hdr->conf_type == 2) {
                chan->fcs = opt_para->optVal;}
        ...
        skb_in->len -= P_OPT_SIZE;
        skb_req->data += P_OPT_SIZE;
        iter_cnt++;
        }
   return 1;
drop:
    ...
    return 0;
}
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Figure 8: Memory safety for iterating a parameter list

notes the function preconditions (which need to be verified

at each callsite of the function). For instance, the execution

of l2cap_conf_parse requires valid pointers (Line 21–22),

valid socket buffer size (Line 23–24) and separated argument
spans (Line 25–28), meaning they do not overlap. In contrast,

loop annotations assist proving loop termination and iterative

memory access safety. It usually includes a loop variant that

changes across iterations and hence is related to loop termi-

nation (e.g., Line 44, length of remaining data in the socket

buffer), and a list of loop invariants that specify predicates

that must hold across iterations and substantially facilitate the

proof procedure (e.g., Line 34–43). Internally, the invariants

are auxiliary lemmas which help the proof and must also be

deductively verified from function annotations. More details

about Frama-C verification can be found in [17].

State Machine Verification by Symbolic Model Check-
ing. To verify state machine correctness, we translate the

DSL specification to symbolic constraints and check if the

model satisfies a number of general properties. PROFACTORY

rewrites DSL specification to the SMT-LIB [19] representa-



tion of Z3, a well-known theorem prover. Z3 supports reason-

ing of constraints in a large number of theories such as integer,

string, array, and bit-vector theories. Specifically, symbolic

variables are introduced to describe attributes of abstract data

types, such as value of a field f , denoted as f .val in P of Rule

1 in Figure 5, and variables such as channel state. Operations

in P such as additions and multiplications are translated to

Z3 operations in the corresponding theories. Logical oper-

ations, such as conjunctions, disjunctions, and implications

(e.g., those in P of Rule 6 in Figure 5 describing the differ-

ent possible state transitions guarded by different conditions)

are directly supported by Z3. General statements such as as-

signments (whose semantics are standard and elided from

Figure 5) are also translated to symbolic constraints. The

translation of these statements is standard [29] and elided.

Loops are unrolled with the unroll bound of 10, which is prac-

tically sufficient for the protocols we model. Note that while

at runtime there are multiple channels, we do not have to

model these instances during symbolic model checking as

we are interested in state transition properties. Variables that

can be defined by the user-space, kernel, and remote requests

are largely free variables. That is, they are only constrained

by range specifications if there are any. We say a property

is satisfied (SAT) if Z3 can find a value assignment to all

these free variables that can satisfy the property. We validate

a number of general properties of state machine behaviors.
State Reachability The first property asserts that a destina-
tion state s1 is reachable from the initial state s0, denoted as
reachable(s0,s1). Let the symbolic encoding of the protocol
be M, which includes the symbolic constraint encodings of
all the protocol specifications and statements, and the state
variable be state. We use reachableInOne(s0,s1) to denote
that s1 can be reached from s0 by one step transition. It is
hence defined as M ∧ state = s0 → state1 = s1. Note that
we have to rename state to state1 to denote the new state.
Intuitively, it is SAT if Z3 can find a valuation to free vari-
ables (e.g., a message) that induces the state to change from
s0 to s1 in one step. Constraint reachableInTwo(s0,s1) is
defined as reachableInOne(s0,sk)∧ reachableInOne(sk,s1).
Note that the M encodings in reachableInOne(s0,sk) and
reachableInOne(sk,s1) need to be renamed as well since they
need to be resolved independently (representing different mes-
sages). Therefore, reachable(s0,s1) is defined as follows.

reachableInOne(s0,s1)∨ reachableInTwo(s0,s1)∨ ...

Currently, our reasoning is bounded at 15 steps, that is, the

maximum transition path has 15 steps.

Transition Coverage This property dictates that any transi-

tion defined in the protocol is feasible, meaning that it can be

triggered by some message sequence(s). Assume the con-

dition guarding a transition from s1 to s2 is e, we assert

reachable(s0,s1)∧ e. Intuitively, we assert that s1 is reach-

able from the initial state and e is satisfiable.

Absence of Transition Conflict This property states that if a

message can trigger two or more transitions, there are not

two of them satisfiable simultaneously. Assume s can lead to

s1, s2, ..., sk, guarded by e1, e2, ..., ek, respectively. For any

i, j ∈ [1,k] and i = j, we assert reachable(s0,s)∧ei ∧e j. Any

SAT result indicates the protocol is buggy. If all are UNSAT,

the property holds.

Race-free Message Sends This is the property illustrated in
Section 2. When two peers are both in some state that is ex-
pected to send out a message, the protocol may be trapped
into an asynchronous sending race that may lead to message
loss. Suppose we have a state sa

1 for device A and a state sb
1

for device B and they have transitions to states sa
2 and sb

2 re-
spectively, which are both triggered by a message send event,
with A sending ma and B sending mb. As both devices are
in a sending race, A may stay at sa

1 or reach sa
2 when mb ar-

rives. Correspondingly, B may stay at sb
1 or reach sb

2 when
ma arrives. Therefore, message loss may happen when (1)
sa

1 or sa
2 does not accept mb, or (2) sb

1 or sb
2 does not accept

ma, since the message ma or mb can be dropped. Validat-
ing this property requires coupling the reasonings of both
sides of a connection. In the following, we define a constraint
coReachInOne(sa

1,s
b
1,s

a
2,s

b
2) that states that by exchanging a

message, device A can reach sa
2 (from sa

1) and device B can

reach sb
2 (from sb

1).

(Ma ∧ sa
1 → sa

2)∧ (Mb ∧ sb
1 → sb

2)∧ (←−m a =
−→m b ∨←−m b =

−→m a)

The first two clauses assert there are messages that induce the

state transitions and the last asserts that the incoming message

at A must be the outgoing message at B or vice-versa. Note

that the messages (e.g., ←−m a and −→m a) are essentially a subset

of symbolic variables in the model Ma. They are instantiated

when Z3 resolves Ma. We can define coReach(sa
1,s

b
1,s

a
2,s

b
2)

to dictate that starting from sa
1 and sb

1, the two devices can

reach sa
2 and sb

2, respectively, after exchanging a sequence

of messages, in a way similar to defining reachable() from

reachableInOne(). For all state pairs sa
1 and sb

1 that can both

send messages, guarded by conditions ea and eb. We assert

coReach(sa
0,s

b
0,s

a
1,s

b
1)∧ ea ∧ eb. If none is SAT, the property

holds. Otherwise, it is vulnerable.

Deadlock-free Message Receives The property states that at
any time when two peers are both expecting an incoming mes-
sage at some state, the protocol may get stuck in a receiving
deadlock. Therefore, given a pair of states sa

1 and sb
1 at the two

peers, respectively, we assert the following.

coReach(sa
0,s

b
0,s

a
1,s

b
1)→ ((Ma ∧ sa

1 → sa
2 ∧ −→m a = nil) ∨

(Mb ∧ sb
1 → sb

2 ∧ −→m b = nil))

The antecedent is the reachability of the two states. The

consequent is to say either one can move forward with a

message send, meaning that the peer does not have to wait for

an incoming message. Any pair that yields UNSAT indicates

a deadlock problem.

Consistent Security Level In Linux each protocol maintains
a security level variable that varies during the lifetime of a
connection, depending on the states of authentication and
encryption. PROFACTORY supports the mechanism although



we do not model it in the DSL syntax/semantics for brevity.
Given a state s, we use sec(s) to denote the security level at
the state. The security consistency property dictates that if a
state can be reached through different message sequences, it
must have the same security level. We assert the following.

reachable(s0,s)→ sec(s) ∧ reachable(s′0,s
′)→ sec(s′)

∧ sec(s) = sec(s′)

Here, s′0 and s′ denote a renamed version of s0 and s, respec-

tively, indicating that they are considered different symbolic

variables internally although they have the same meaning.

This is to allow Z3 to resolve them independently. Any SAT

result suggests an inconsistency problem. In Section 7, we

would exhibit a violation of the property.

For the above discussion, one can observe that the model

checking is performed in two modes: isolated and coupled.

In the former, we only consider one side of the connection

and assume messages from the other side can be anything,

even corrupted intentionally by the adversary. In the latter, we

reason both sides together and trust the connection to deliver

messages properly such that messages on the two sides can be

coupled (e.g., in the race-free and deadlock-free properties).

7 Evaluation

We implement a prototype of PROFACTORY in Haskell. We

use it to customize 8 IoT protocols, including various Blue-

tooth (v5.0) protocols for Linux 4.10 kernel and Zigbee (v1.0)

NWK layer for ZBOSS simulator [3]. Note that PROFACTORY

can also be ported to other protocol stacks or systems if cor-

responding platform-dependent interfaces are provided. Cur-

rently, PROFACTORY does not fully support code generation

for the Android kernel. Hence, for the evaluation purposes,

we generate core communication components of Bluetooth

protocols and manually adapt and integrate them into Android

to obtain a customized Bluedroid (or Fluoride) [4].

According to original Bluetooth specifications, we write

SDP (Service Discovery Protocol), PAN (Personal Area Net-

work), BNEP, HIDP, RFCOMM and L2CAP in our DSL, and

generate code for Linux. Note that BlueZ operates SDP and

PAN in the user space but we generate kernel versions for

them. Those implementations all pass the verification and

they work properly when communicating with real devices

(or simulator in the case of Zigbee). We customize RFCOMM

and L2CAP, only focusing on the functionality of connection-

oriented data delivery, and separating L2CAP classic and

L2CAP BLE (Bluetooth Low Energy). Table 1 shows the

lines of code in DSL, in the original implementation, and in

the generated implementation for each protocol. Compared to

the original implementation, the DSL specifications are much

more succinct. Even the generated code is of smaller size.

7.1 System Performance
With the generated protocol implementation, we deploy two

Raspberry Pi 3 devices, two desktop computers and two An-

Table 1: LoC comparison between original BlueZ implemen-

tations and codes generated by PROFACTORY

Protocol
Lines of Codes

Model Definition Original Generated
SDP 971 5500 3478
PAN 183 1023 635

BNEP 590 1447 1162
HIDP 578 1966 1580

RFCOMM 738 4547 2465
L2CAP-CLA 1148

10328
3419

L2CAP-BLE 1247 3868
Zigbee-NWK 782 2373 1471

droid phones (Google Pixel 2) to measure performance for

paired communication. Specifically, Raspberry Pi 3 devices

and desktop computers load our customized L2CAP and RF-

COMM, while we manually replace communication functions

with our generated codes (adapted for Android) for L2CAP

and RFCOMM in Bluedroid. We perform file transfer (object

exchange, using RFCOMM and L2CAP) of a 20MB file for

both of the original Bluetooth implementations (BlueZ and

Bluedroid) and our customized ones. We repeat the experi-

ment 10 times and collect the geometric mean of time costs

in Figure 9. As illustrated, the customized implementation is

about 4% less efficient. The efficiency loss in customization is

mainly caused by the sanity checks enforced on fields, and the

lack of data structure layout optimization in type-based code

generation. Meanwhile, the memory footprints of the original

bluetooth module are 536KB, 536KB and 439KB for desktop,

Raspberry Pi and Phone, while the ones of the customized

module are 533KB, 533KB and 438KB. The difference is

negligible, and the customized module consumes slightly less

because we trimmed unused components in customization.
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Figure 9: Comparison of time costs in paired file transfer

Zigbee Evaluation It is challenging to obtain devices with

a programmable Zigbee stack. Therefore, we select the Zig-

bee simulator ZBOSS to conduct our evaluation. Note that

this is a reasonable option because mainstream manufactur-

ers are using ZBOSS to test Zigbee implementations before

product shipment. In Zigbee NWK, we model the complete

NLDE (Network Layer Data Entity) which is responsible for

data delivery, consisting of request (for data sending), con-

firm (for confirming receipt) and indication (for updating link

quality). In particular, we customize NLDE by removing the

alias fields which are rarely used. For NLME (Network Layer

Management Entity), we only model the message formats and

generate the primary parsers, but all the payload processing is

delegated to the original implementation in ZBOSS. NLME

is hardware-specific, highly coupled with lots of hardware

physical features and routing operations. Without introducing

additional specifications to describe those semantics, PRO-

FACTORY is not able to correctly express the whole procedure.



Message formats of Zigbee are flatter than that of Bluetooth

and a header tailing with a variable-sized field is sufficient to

depict all the messages. Because Zigbee establishes a connec-

tionless ad-hoc network, it does not have multiplexing, while

all the shared connection information is stored in the NIB

data structure for concurrent access. Also, since it does not

maintain connections, timer operations are excluded (router

nodes require timers to repeatedly send out broadcast mes-

sages, but our evaluation only focuses on message delivery of

end nodes). ZBOSS is not a kernel-oriented implementation

and hence the generation of standard socket interfaces are

excluded. ZBOSS maintains a buffer pool, where a message

buffer is allocated by ZB_BUFF_FROM_REF and released by

zb_free_buf. Correspondingly, kernel socket buffer opera-

tions are shifted to the two functions in code generation for

Zigbee. Between layers, data are delegated through a ring

buffer (kernel simply passes the socket buffer). Ring buffer

operations are wrapped by ZBOSS, and we can directly gen-

erate code to invoke them. Note that different from kernel,

the lower/upper layer in ZBOSS is not responsible to release

the buffer, hence invoking zb_free_buf is always generated

after writing to the ring buffer.

In evaluation, we create 5, 10, 15 and 20 nodes to measure

the communication time costs. One node communicates with

each of the other nodes to transfer 1MB application data. In

addition to those nodes, we also create a forwarding node serv-

ing as a router to prevent noises caused by pairwise communi-

cation. Results are collected in Figure 10. As demonstrated, no

significant overhead could be observed. Meanwhile, the mem-

ory footprints of the original ZBOSS are 16.9KB, 17.8KB,

19.5KB and 22.4KB, while the ones of the customized version

are 16.9KB, 17.7KB, 19.7KB and 22.4KB. The difference is

also negligible.
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Figure 10: Comparison of time costs in Zigbee data transfer

7.2 Vulnerability Averting
Appendix B lists 81 (excluding the one in Section 2) recently-

released CVEs that could have been averted if protocols had

been defined and generated in PROFACTORY. Specifically,

we searched for target CVEs by keyword “Bluetooth” (from

2017) and “Zigbee”, and collected the ones related to field

boundary checking and security downgrading. These repre-

sent the CVEs that we can find from public sources for the

protocols we consider. We do not intend to claim the list

is complete as there may be vulnerabilities that we are not

aware of. The symbolic model checking does not disclose

state-machine bugs in most of the protocols rewritten in our

DSL. This is expected because these are widely-used pro-

tocols which are considered well specified and maintained.

However, we do find a known state-machine vulnerability in

PAN that could have been averted. Next, we showcase two

of the 81 vulnerabilities (one for secure message parsing and

one for state machine verification) in details.

722 sdp_buf_t *pCache = sdp_get_cached_rsp(cstate); ...
726 if (pCache) {
        if (pCache && cstate->cStateValue.maxBytesSent < pCache->data_size) // patch
727     short sent = MIN(max_rsp_size, pCache->data_size - cstate->cStateValue.maxBytesSent);
728     pResponse = pCache->data;
729     memcpy(buf->data, pResponse + cstate->cStateValue.maxBytesSent, sent);

/sdpd-request.c

Figure 11: Code and patch of CVE-2017-1000250

CVE-2017-1000250. This vulnerability [56] can cause infor-

mation leaks. It resides in the SDP implementation of Linux

BlueZ (version 5.46 or earlier). When BlueZ responds to an

SDP request, the response message size may exceed the MTU

of L2CAP and is dropped by L2CAP. Hence SDP must real-

ize its own fragmentation mechanism. Specifically, a sender

peer marks a field to notify a receiver peer that the current

packet has continuous fragments. Accordingly, the receiver

peer responds with an offset denoting the bytes that have been

received so far. Then, the sender peer continues sending the

next fragment from the exact offset. Figure 11 illustrates the

buggy code and its original patch [7]. As demonstrated, before

patching, the value of offset maxBytesSent is not checked

and sent can be overflowed. Therefore, out-of-bound bytes

can be copied to buf � data and sent to the remote peer.

Note that automatically fixing the bug on the existing imple-

mentation (i.e., generating the illustrated patch) is extremely

difficult without developers’ intervention as it is very hard for

an automatic analysis to infer the needed data-flow relations.

In contrast, since we automatically generate secure packet

fragmentation/assembly code all together and perform code

verification with Frama-C, the vulnerability is avoided in the

first place.

CVE-2017-0783. This vulnerability [5] allows a man-in-

the-middle attack and it resides in Android/Windows’s PAN

implementation. PAN offers the service of network proxy via

Bluetooth devices. In the protocol, a device can serve as any

of the three roles, GN (Group Ad-hoc Network), NAP (Net-

work Access Point) and PANU (PAN User). Among them,

PANU acts as a network client user and GN/NAP represents

a proxy/router/bridge. When a PANU device connects to a

PANU/GN/NAP device, neither peer checks the security level.

In contrast, when a GN/NAP device connects to a PANU

device, the PANU device must perform the security check

because an unauthorized GN/NAP device can redirect con-

nections to malicious targets. In the vulnerable Bluedroid

implementation [6], a PANU device is allowed to act as a

GN/NAP device after it connects to a PANU device, bypassing

the security check and performing reverse tethering. Figure 12

illustrates the problematic state machine, where a PAN device

can send/receive wrapped network messages at PAN_ready



PAN_start

PAN_pend

PAN_ready
 

 
   

Recv pan_req (((pan_req->uuid == GN || pan_req->uuid == NAP) && conn->uuid == PANU && 
conn->sec == AUTHENTICATED, PAN_start, PAN_ready, pan_rsp, {pan_rsp->result = SUCCESS; ...}))

 

Recv pan_req ((pan_req->uuid == PANU, PAN_start, PAN_ready, pan_rsp, {pan_rsp->result = SUCCESS; ...})) 

Send pan_net_msg ((nil, PAN_ready, PAN_ready, {...}))

Recv pan_net_msg ((nil, PAN_ready, PAN_ready, nil, {...}))

Send pan_req ((conn->sec == AUTHENTICATED, PAN_start, PAN_pend, 
{pan_req->uuid = conn->uuid; ...}))

 

Recv pan_rsp ((pan_rsp->result == SUCCESS, PAN_pend, PAN_ready, nil, {...}))  

Figure 12: PAN state machine of CVE-2017-0783

state. The security issue lies in that a device has two transi-

tion paths (� and �) from PAN_start to PAN_ready but they

have inconsistent security levels (� requires AUTHENTICATED

but � does not). The bug is detected when we model check

the consistent security level property. Note that we integrate

the uuid which is exchanged in ATT (Attribute Protocol)

into PAN and omit the failure processing branches for PAN

messages to simplify our modeling and demonstration. The

official patch [6] roughly prohibits any connection to/from

remote GN/NAP devices when an Android device performs

as PANU, while splitting the PAN_ready state to deal with �
and � separately may be a better solution.

8 Discussion

Flow Control. PROFACTORY currently does not support

modeling flow control algorithms. Specifying flow-control is

challenging due to the lack of regular design of the various

flow-control algorithms. However in the context of IoT, due to

resource constraints, existing protocols rarely have complex

flow control. In fact, early BlueZ implementations did not

have it at all. Regularity may be abstracted out of popular

light-weight flow control algorithms and modeled in our DSL.

We will leave it to our future work.

Specification Flaws. The working of PROFACTORY largely

relies on the robustness of the specification (or DSL). If any

part of the specification was further found flawed (e.g., a pro-

tocol model specified by PROFACTORY cannot be securely

handled in the generated implementation), the claimed secu-

rity guarantees should be degraded.

Security Properties. Cryptographic constructs are not cov-

ered in current specification set, but all the cipher operations

are delegated to a pre-established lower layer. This leads to the

lack of security guarantees for cryptographic properties (e.g.,

authentication and secrecy) in PROFACTORY. The future work

of integrating existing cryptographic modeling/verification

tools into PROFACTORY can bridge the gap.

Firmware Deployment. We foresee two modes of deploy-

ment in IoT firmware. The first one is in-production cus-

tomization, in which the manufacturers make use of PRO-

FACTORY to generate secure and correct implementation and

customize their networking dialects before shipping the prod-

ucts. The second is post-deployment customization. Through

the update interface of a firmware, hardened and customized

networking code can be uploaded to deployed products.

Platform Dependence. As discussed in Section 5, the code

generation is heavily dependent on the underlying platforms

because they can have diverse underlying protocol imple-

mentation primitives. This degrades the portability of PRO-

FACTORY. Nevertheless, if we target code generation for a

particular kernel, this seems to be an inevitable issue. Adding

virtualization layers may potentially mitigate the problem.

Semantic Preservation. Currently, semantic-preservation

correctness of PROFACTORY code translation has not been

comprehensively verified. This will be part of our future work

for compiler verification. However, the post-modeling verifi-

cation still offers security guarantees.

9 Related Work

Protocol Modeling Lots of tools towards secure parser gener-

ation have been proposed in recent years [12,22,43,45,55,57].

In EverParse [55] researchers devise a compiler transform-

ing tag-length-value message formats to low-level F∗ code

that calls a library of parser combinators which are formally

verified in F∗. In this way, the security of parsers is guaran-

teed and it proves to be effective in averting existing TLS

vulnerabilities. In [45] a USB-specific message DSL is pro-

posed to emit a hardening suite, which is then be integrated

into a production kernel to avert USB parsing vulnerabilities.

PADS [43], Spicy [57], Hammer [12] and Nail [22] are all

message formalization tools that produce robust parsers from

customized message specifications, covering common text

or binary protocols across different languages. In particular,

PADS is more data-oriented, which offers auxiliary tools to

convert data in XML and XQuery formats to formalized spec-

ifications. However, as aforementioned, those tools largely

focus on messages, and some of them are not able to describe

non-context-free formats, we hence develop PROFACTORY to

realize comprehensive customization for low-level protocols.

Protocol Verification Verifying implementation correctness

is a persistent research effort in protocol security area [24–

28, 30, 38, 44, 51, 53, 59]. In ProVerif [30] security protocols

are represented by Horn clauses to prove (strong) secrecy,

authentication and process equivalence. It is applied in [26] to

verify the security of symbolic TLS1.3 models. Tamarin [51]

specifies protocol actions taken by agents in different roles,

using an expressive DSL based on multiset rewriting rules,

to automatically construct proofs for security protocols. It is

applied in [24, 38] to perform formal analysis of 5G AKA

protocols. AGVI [59] applies iterative deepening to perform

cost-constraint searching in order to generate a near-optimal

security protocol, with the lowest cost, satisfying all the se-

curity requirements that are encoded in a DSL. The authors

of [25] resolve the TLS composite state machine issue (unex-

pectedly accepting invalid handshakes due to state machine

fusion) by writing a secure TLS implementation that is ver-

ified by Frama-C. In [44] researchers leverage adversarial



testing technique to disclose an authentication vulnerability

in 4G LTE. Those techniques are targeting security protocols

that are considered orthogonal and complementary to PRO-

FACTORY. In [27, 28, 53] various components of TCP imple-

mentation are verified through different symbolic modeling

techniques, however, PROFACTORY aims to resolve protocol

security issues at the beginning, generating secure protocol

implementations.

Protocol Reverse Engineering and Fuzzing Reverse-

engineering protocol specifications from network traces

and/or program execution has been well studied in the past

decade [31,33,36,39–41,46–48,50,54,62,63,65]. In Discov-

erer [39] and ScriptGen [48], protocol communication pat-

tern is heuristically learned to infer message formats. Hence,

in [31, 47], researchers improve the learning by performing

message clustering based on protocol context and semantic

information. In [33, 41, 50, 63], researchers extract message

formats in a different direction, leveraging dynamic tainting

to monitor how a message is processed on the receiver side.

In Prospex [36], apart from message formats, an approximate

but meaningful state machine can also be extracted based on

an augmented prefix tree acceptor. These efforts are comple-

mentary to PROFACTORY as the reverse engineered proto-

col specification can be formalized with our DSL. Protocol

fuzzing [23, 34, 58, 60] mutates network messages and net-

work states to disclose vulnerabilities in protocols. They often

require protocol specifications to operate. Our DSL provides

a way to formulate such specifications.

10 Conclusion

We propose PROFACTORY, in which a protocol could be mod-

eled, checked and securely generated, averting common vul-

nerabilities residing in protocol implementations. We leverage

PROFACTORY to generate Bluetooth and Zigbee protocols

and the evaluation shows that PROFACTORY can help to avert

82 known CVEs.
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A Platform-dependent Interface Example
Figure 13 illustrates the platform-dependent interfaces of

L2CAP, with the user space on the left, the lower layer proto-

col (HCI) on the right, the box with green header in the center

generated from the DSL and the boxes with headers of other

colors the interfaces. Specifically, module initialization (the

orange box in the middle of the second column) registers the

protocol structure (the top orange box in the third column) and

L2CAP socket operations that are invoked by user space (the

bottom orange box). The registered socket operations need to

invoke the functions generated from DSL (in the center) to

fulfill message parsing and state transition. Inside those func-

tions, common operations of Bluetooth family, kernel socket,

kernel data structure, and kernel memory are invoked (through

the interfaces in the red boxes). In particular, L2CAP needs to

invoke these interfaces to accomplish data delivery and con-

nection establishment. The lower layer protocol HCI (Host

Controller Interface) invokes a callback l2cap_recv_acldata
to inform L2CAP upon receiving a message. L2CAP invokes

a callback l2cap_data_recv after unwrapping the raw data.



lower layer callback
l2cap_recv_acldata

upper layer callback
l2cap_data_recv

DSL-generated function
message parsing
state transition

common socket operation
sock_queue_rcv_skb

sk_alloc
skb_queue_purge

...

common BT family operation
bt_sock_recvmsg

bt_accept_enqueue
bt_accept_dequeue

...

socket library calls
socket

connect
listen

accept
send

...

common kernel implementation
kernel data structure

kernel memory operation
...

protocol registrationBT family registration

socket operation registration

user space L2CAP layer HCI layer

l2cap socket family operation
.family = PF_BLUETOOTH
.owner = THIS_MODULE

.create = l2cap_sock_create

module initialization
l2cap_init_sockets

l2cap socket operation
.family = PF_BLUETOOTH
.owner = THIS_MODULE

.connect = l2cap_sock_connect
.listen = l2cap_sock_listen

.accept = l2cap_sock_accept
.sendmsg = l2cap_sock_sendmsg

...

protocol structure
.name = “L2CAP”

.owner = THIS_MODULE
.obj_size = sizeof (struct l2cap_info)

lower layer interface
hci_send_acl

hci_security_check
hci_connect_acl
hci_get_route

...

Figure 13: The platform-dependent interfaces of L2CAP

B CVEs Averted By PROFACTORY

Table 2 summarizes 82 recently-disclosed IoT vulnerabilities

(including Bluetooth and Zigbee), 81 of which could have

been averted if the corresponding protocols were modeled

and generated from PROFACTORY. When PoCs are available,

we checked if they can attack our generated code. Otherwise,

we manually checked the CVE patches and ensure the trigger-

ing conditions are precluded in generated code. The avertable

vulnerabilities are caused by either the lack of message bound-

ary checks or the possible transition paths leading to security

downgrading (i.e., inconsistent security levels). Further, we

also find a representative vulnerability example that PRO-

FACTORY cannot avert, cracking the protocol session key.

Since current version of PROFACTORY cannot model crypto-

graphical interactions, any vulnerability residing in the key

negotiation procedure of a protocol cannot be averted.

Table 2: Averting IoT vulnerabilities
CVE No. Protocol Type Avertable CVE No. Protocol Type Avertable

CVE-2020-0022 Bluetooth missing boundary check � CVE-2019-9474 Bluetooth missing boundary check �
CVE-2019-9473 Bluetooth missing boundary check � CVE-2019-9462 Bluetooth missing boundary check �
CVE-2019-9435 Bluetooth missing boundary check � CVE-2019-9434 Bluetooth missing boundary check �
CVE-2019-9426 Bluetooth missing boundary check � CVE-2019-9425 Bluetooth missing boundary check �
CVE-2019-9422 Bluetooth missing boundary check � CVE-2019-9419 Bluetooth missing boundary check �
CVE-2019-9417 Bluetooth missing boundary check � CVE-2019-9413 Bluetooth missing boundary check �
CVE-2019-9404 Bluetooth missing boundary check � CVE-2019-9402 Bluetooth missing boundary check �
CVE-2019-9401 Bluetooth missing boundary check � CVE-2019-9398 Bluetooth missing boundary check �
CVE-2019-9397 Bluetooth missing boundary check � CVE-2019-9396 Bluetooth missing boundary check �
CVE-2019-9395 Bluetooth missing boundary check � CVE-2019-9394 Bluetooth missing boundary check �
CVE-2019-9393 Bluetooth missing boundary check � CVE-2019-9390 Bluetooth missing boundary check �
CVE-2019-9389 Bluetooth missing boundary check � CVE-2019-9388 Bluetooth missing boundary check �
CVE-2019-9387 Bluetooth missing boundary check � CVE-2019-9368 Bluetooth missing boundary check �
CVE-2019-9367 Bluetooth missing boundary check � CVE-2019-9363 Bluetooth missing boundary check �
CVE-2019-9355 Bluetooth missing boundary check � CVE-2019-9353 Bluetooth missing boundary check �
CVE-2019-9343 Bluetooth missing boundary check � CVE-2019-9342 Bluetooth missing boundary check �
CVE-2019-9341 Bluetooth missing boundary check � CVE-2019-9333 Bluetooth missing boundary check �
CVE-2019-9332 Bluetooth missing boundary check � CVE-2019-9331 Bluetooth missing boundary check �
CVE-2019-9330 Bluetooth missing boundary check � CVE-2019-9328 Bluetooth missing boundary check �
CVE-2019-9327 Bluetooth missing boundary check � CVE-2019-9326 Bluetooth missing boundary check �
CVE-2019-9312 Bluetooth missing boundary check � CVE-2019-9289 Bluetooth missing boundary check �
CVE-2019-9287 Bluetooth missing boundary check � CVE-2019-9286 Bluetooth missing boundary check �
CVE-2019-9285 Bluetooth missing boundary check � CVE-2019-9284 Bluetooth missing boundary check �
CVE-2019-9265 Bluetooth missing boundary check � CVE-2019-9260 Bluetooth missing boundary check �
CVE-2019-9250 Bluetooth missing boundary check � CVE-2019-9249 Bluetooth missing boundary check �
CVE-2019-9241 Bluetooth missing boundary check � CVE-2019-9237 Bluetooth missing boundary check �
CVE-2019-2009 Bluetooth missing boundary check � CVE-2019-1996 Bluetooth missing boundary check �
CVE-2018-9588 Bluetooth missing boundary check � CVE-2018-9583 Bluetooth missing boundary check �
CVE-2018-9566 Bluetooth missing boundary check � CVE-2018-9560 Bluetooth missing boundary check �
CVE-2018-9555 Bluetooth missing boundary check � CVE-2018-9544 Bluetooth missing boundary check �
CVE-2018-9541 Bluetooth missing boundary check � CVE-2018-9540 Bluetooth missing boundary check �
CVE-2018-9510 Bluetooth missing boundary check � CVE-2018-9509 Bluetooth missing boundary check �
CVE-2018-9508 Bluetooth missing boundary check � CVE-2018-9507 Bluetooth missing boundary check �
CVE-2018-9506 Bluetooth missing boundary check � CVE-2018-9505 Bluetooth missing boundary check �
CVE-2018-9504 Bluetooth missing boundary check � CVE-2018-9502 Bluetooth missing boundary check �
CVE-2018-9363 Bluetooth missing boundary check � CVE-2018-9358 Bluetooth missing boundary check �
CVE-2017-0785 Bluetooth missing boundary check � CVE-2017-13283 Bluetooth missing boundary check �

CVE-2017-1000250 Bluetooth missing boundary check � CVE-2020-0379 Bluetooth downgrading security level �
CVE-2020-9770 Bluetooth downgrading security level � CVE-2019-2225 Bluetooth downgrading security level �
CVE-2017-0783 Bluetooth downgrading security level � CVE-2015-8732 Zigbee missing boundary check �
CVE-2015-6244 Zigbee missing boundary check � CVE-2020-15802 Bluetooth cracking session key �


