
FuZZan: Efficient Sanitizer Metadata Design for Fuzzing

Yuseok Jeon
Purdue University

Wookhyun Han
KAIST

Nathan Burow
Purdue University

Mathias Payer
EPFL

Abstract
Fuzzing is one of the most popular and effective techniques

for finding software bugs. To detect triggered bugs, fuzzers
leverage a variety of sanitizers in practice. Unfortunately, san-
itizers target long running experiments—e.g., developer test
suites—not fuzzing, where execution time is highly variable
ranging from extremely short to long. Design decisions made
for developer test suites introduce high overhead on short
lived fuzzing executions, decreasing the fuzzer’s throughput
and thereby reducing effectiveness.

The root cause of this sanitization overhead is the heavy-
weight metadata structure that is optimized for frequent meta-
data operations over long executions. To address this, we
design new metadata structures for sanitizers, and propose
FuZZan to automatically select the optimal metadata structure
without any user configuration. Our new metadata structures
have the same bug detection capabilities as the ones they
replace. We implement and apply these ideas to Address San-
itizer (ASan), which is the most popular sanitizer.

Our evaluation shows that on the Google fuzzer test suite,
FuZZan improves fuzzing throughput over ASan by 48% start-
ing with Google’s provided seeds (52% when starting with
empty seeds on the same applications). Due to this improved
throughput, FuZZan discovers 13% more unique paths given
the same 24 hours and finds bugs 42% faster. Furthermore,
FuZZan catches all bugs ASan does; i.e., we have not traded
precision for performance. Our findings show that sanitizer
performance overhead is avoidable when metadata structures
are designed for fuzzing, and that the performance difference
will have a meaningful difference in squashing software bugs.

1 Introduction

Fuzzing [33] is a powerful and widely used software security
testing technique that uses randomly generated inputs to find
bugs. Fuzzing has seen near ubiquitous adoption in industry,
and has discovered countless bugs. For example, the state-
of-the-art fuzzer American Fuzzy Lop (AFL) has discovered

hundreds of bugs in widely-used software [57], while Google
has found 16,000 bugs in Chrome and 11,000 bugs in over
160 other open source projects using fuzzing [10]. On its
own, fuzzing only discovers a subset of all triggered bugs,
e.g., failed assertions or memory errors causing segmentation
faults. Bugs that silently corrupt the program’s memory state,
without causing a crash, are missed. To detect such bugs,
fuzzers must be paired with sanitizers that enforce security
policies at runtime by turning a silent corruption into a crash.
To date, around 34 sanitizers [47] have been prototyped. So
far, only the LLVM-based sanitizers ASan, MSan, LeakSan,
UBSan, and TSan have seen wide-spread use. For brevity, we
use sanitizers to refer to such frequently used sanitizers in the
rest of the paper.

Unfortunately, sanitizers are designed for developer-driven
software testing rather than fuzzing, and are consequently op-
timized for minimal per-check cost, not startup/teardown of
the metadata structure. Consequently, they are based around
a shadow-memory data structure wherein the address space
is partitioned, and metadata is encoded into the “shadow”
memory at a constant offset from program memory. Opti-
mizing for long executions makes sense in the context of
developer-driven software testing, which generally verifies
correct behavior on expected input, leading to relatively long
test execution times. Fuzzing has a more diverse set of inputs
that cause both short (i.e., invalid inputs) and long running ex-
ecutions with billions of executions. For example, the Chrome
developers use Address Sanitizer (ASan) for their unit tests
and long-running integration tests [39]. However, the under-
lying design decisions that make ASan a highly performant
sanitizer for long running tests result in high performance
overhead—up to 6.59×—for short executions, as observed in
a fuzzing environment1. This high overhead reduces through-
put, thereby preventing a fuzzer from finding bugs effectively.

We analyze the source of this overhead across a variety
of sanitizers, and attribute the cost to heavy-weight metadata
structures employed by these sanitizers. For example, Address

1The average time for a single execution across the first 500,000 tests for
the full Google fuzzer test suite is 0.61ms.

1

Sanitizer maps an additional 20TB of memory for each execu-
tion, Memory Sanitizer (MSan) 72TB, and Thread Sanitizer
(TSan) 97TB on a 64-bit platform. The high setup/teardown
cost of heavy-weight metadata structures is amortized over
the long execution of programs due to the low per-check
cost. In contrast, a fuzzing campaign typically consists of
massive amounts of short-lived executions, effectively trans-
forming what is a large one-time cost into a large runtime cost.
For example, Table 1 indicates that memory management is
the main source of overhead for ASan under fuzzing on the
Google fuzz test suite, accounting for 40.16% of the total
execution time we observe. Memory management is the key
bottleneck for using sanitizers with fuzzers, and has to date
gone unaddressed.

Instead, increasing the efficiency and efficacy of fuzzing
has received significant research attention on two fronts: (i)
mechanisms that reduce the overhead of fuzzers [27, 55, 57];
and (ii) mechanisms that reduce the overhead of sanitiza-
tion on longer running tests and conflicts between sanitiz-
ers [25, 37, 38, 52, 54]. These works address fuzzers and sani-
tizers in isolation, ignoring the core sanitizer design decision
to optimize for long running test cases using a heavy-weight
metadata structure that limits sanitizer performance in combi-
nation with fuzzers. Consequently, optimization of sanitizer
memory management for short execution times remains an
open challenge, motivated by the need to design sanitizers
that are optimal under fuzz testing.

We present FuZZan, which uses a two-pronged approach
to optimize sanitizers for short execution times, as seen un-
der fuzzing: (i) two new light-weight metadata structures that
trade significantly reduced startup/teardown costs 2 for moder-
ately higher (or equivalent) per access costs and (ii) a dynamic
metadata structure switching technique, which dynamically
selects the optimal metadata structure during a fuzzing cam-
paign based on the current execution profile of the program;
i.e., how often the metadata is accessed. Each of our proposed
metadata structures is optimized for different execution pat-
terns; i.e., they have different costs for creating an entry when
an object is allocated versus looking up information in the
metadata table. By observing the metadata access and mem-
ory usage patterns at runtime, FuZZan dynamically switches
to the best metadata structure without user interaction, and
tunes this configuration throughout the fuzzing campaign.

We apply our ideas to ASan, which is the most widely
used sanitizer [43, 44, 47]. ASan focuses on memory safety
violations—arguably the most dangerous class of bugs, ac-
counting for 70% of vulnerabilities at Microsoft [34]—
and has already detected over 10,000 memory safety viola-
tions [9, 12, 50] in various applications (e.g., over 3,000 bugs
in Chrome in 3 years [50]) and the Linux kernel (e.g., over
1,000 bugs [12, 51]) by using a customized kernel address

2Compared to ASan, our min-shadow memory mode reduces the time that
startup/teardown functions spend in the kernel by 62% on the first 500,000
tests across the full Google fuzzer test suite.

Modes
ASan’s

init time
ms (%)

ASan’s
logging time

ms (%)

Memory
mgmt. time

ms (%)
page faults

Native 0.00 (0.00%) 0.00 (0.00%) 0.05 (11.49%) 2,569
ASan 0.17 (10.58%) 0.30 (18.86%) 0.63 (40.16%) 11,967

Table 1: Comparison between native and ASan executions
with a breakdown of time spent in memory management,
and time spent for ASan’s initialization and logging. Results
are aggregated over 500,000 executions of the full Google
fuzzer test suite [11]. Times are shown in milliseconds, and
% denotes the ratio to total execution time.

sanitizer (KASan). We further apply FuZZan to MSan and
MOpt-AFL.

FuZZan improves fuzzing throughput over ASan by 52%
when starting with empty seeds and 48% when starting with
Google’s seed corpus, averaged across all applications in the
Google fuzzer test suite [11] as part of our input record/replay
fuzzing experiment. Due to this improved throughput, FuZ-
Zan discovers 13% more unique paths (with an improvement
in throughput of 61% compared to ASan) given the standard
24 hour fuzz testing with widely used real-world software and
a provided corpus of starting seeds.

Crucially, FuZZan achieves this without any reduction in
bug-finding ability. Therefore, FuZZan strictly increases the
performance of ASan-enabled fuzzing, resulting in finding
the same bugs in less time than using ASan with the same
fuzzer.

Our contributions are:

1. Identifying and analyzing the primary source of over-
head when sanitizers are used with fuzzing, and pin-
pointing the sanitizer design decisions that cause the
overhead;

2. Designing and implementing a sanitizer optimization
(FuZZan) and applying it to ASan; that is, we design
several new metadata structures along with a dynamic
metadata structure switching to choose the optimal struc-
ture at runtime. We also validate the generality of our
design by further applying it to MSan and MOpt-AFL;

3. Evaluating FuZZan on the Google fuzzer test suite and
other widely used real-world software and showing that
FuZZan effectively improves fuzzing throughput (and
therefore discovers more unique bugs or paths given the
same amount of time).

2 Background and Analysis

We present an overview of fuzzing overhead and ASan (our
target sanitizer). Further, we detail the design conflicts be-
tween ASan and fuzzing when used in combination.

2

2.1 Fuzzing overhead

Given the same input generation capabilities, a fuzzer’s
throughput (executions per second) is critical to its effec-
tiveness in finding bugs. Greater throughput results in more
code and data paths being explored, and thus potentially
triggers more bugs. Running a fuzzer imposes some over-
head on the program, a major component of which is the
repeated execution of the target program’s initialization rou-
tines. These routines—including program loading, execve,
and initialization—do not change across test cases, and hence
result in repeated and unnecessary startup costs. To reduce this
overhead, many fuzzers leverage a fork server. A fork server
loads and executes the target program to a fully-initialized
state, and then clones this process to execute each test case.
This ensures that the execution of each test case begins from
an initialized state, and removes the overhead associated with
the initial startup.

Another technique for reducing process initialization costs
is in-process fuzzing, such as AFL’s persistent mode and lib-
Fuzzer. In-process fuzzing wraps each test in one iteration of
a loop in one process, thus avoiding starting a new process
for each test. However, in-process fuzzing generally requires
manual analysis and code changes [13, 58]. Additionally, in-
process fuzzing requires the target code to be stateless across
executions as all tests share one process environment, other-
wise the execution of one test may affect subsequent ones,
potentially leading to false positives. Consequently, testers
should avoid in-process fuzzing for library code using global
variables. Bugs found from in-process fuzzing may not be
reproducible as it is not always possible to construct a valid
calling context to trigger detected bugs in the target function,
and side-effects across multiple function calls may not be cap-
tured [32]. Because of these limitations, in-process fuzzing is
used on stateless functions in libraries, while the fork server
model (i.e., out-of-process fuzzing) remains the most general
fuzzing mode for fuzzing programs.

2.2 Address Sanitizer

All sanitizers leverage a customized metadata structure [47].
Out of many different metadata schemes, shadow memory
(both direct-mapped or multi-level shadow) is the most widely
used [4, 14–16, 29, 30, 42, 45, 48, 49, 56]. ASan enforces
memory safety by encoding the accessibility of each byte
in shadow memory. Allocated (and therefore accessible) ar-
eas are marked and padded with inaccessible red zones. In
particular, direct-mapped shadow memory encodes the valid-
ity of the entire virtual memory space, with every 8-bytes
of memory mapping to 1-byte in shadow memory. Shadow
memory encodes the state of application memory. The 8-bit
value k encodes that the 8-k bytes of the mapped memory are
accessible. The corresponding shadow memory address for a
byte of memory is at:

addrshadow = (addr >> 3)+offset

where addr is the accessed address. Generally, ASan only
inserts redzones to the high address side of each object as
the preceding object’s redzone suffices for the low address
side. ASan also instruments each runtime memory access to
check if the accessed memory is in a red zone, and if so faults.
ASan’s effectiveness in detecting hard-to-catch memory bugs
has led to its widespread adoption. It has become best prac-
tice [47] to use ASan (or KASan [20], the kernel equivalent)
with a fuzzer to improve the bug detection capability.

2.3 Overhead Analysis of Fuzzing with ASan

To understand ASan’s overhead with fuzzing, we analyze the
Linux kernel functions used during fuzzing campaigns. Ta-
ble 1 shows the overhead added by ASan, broken out across
ASan’s logging, ASan’s initialization, and memory manage-
ment. Our experiments measure the ratio of the time spent in
the kernel functions compared to the total execution time for
a number of target programs.

Note that memory management makes up 40.16% of
ASan’s total execution time, as opposed to 11.49% for the
base case, and that memory management is more than dou-
ble the overhead of ASan’s logging and initialization com-
bined. ASan’s heavy use of the virtual address space results
in 4.66× page faults compared to native execution. Our mem-
ory management overhead numbers reflect the time spent
by the kernel in the four core page table management func-
tions: (i) unmap_vmas (24.6%), (ii) free_pgtable (4.7%),
(iii) do_wp_page (8.2%), and (iv) sys_mmap (2.6%).

Notably, unmap_vmas and free_pgtable correspond to
73% of ASan’s measured memory management overhead
across the four core page table management functions. The
execution time for these two functions (unmap_vmas and
free_pgtable) is 10x higher than when executing without
ASan. To break this overhead down, when executing a test
under the fork server mode, a fuzzer needs to create a new
process for each test. During initialization, ASan reserves
memory space (20TB total, including 16TB of shadow mem-
ory, and a separate 4TB for the heap on 64-bit platforms) and
then poisons the shadow memory for globals and the heap.
Accessing these pages incurs additional page faults, and thus
page table management overhead in the kernel. Note that
the large heap area causes sparse page table entries (PTEs),
which increase the number of pages used for the page table
and memory management overhead.

Existing techniques to deal efficiently with large alloca-
tions do not help here. Lazy page allocation of the large
virtual memory area used by ASan does not mitigate memory
management overhead in this case, as many of the pages are
accessed when shadow memory is poisoned. Poisoning forces
a copy even for copy-on-write pages, and thus increases page

3

table management cost. During execution, memory alloca-
tions and accesses cause additional shadow memory pages to
be used, again with page faults and page table management.
When the process exits, the kernel clears all page table en-
tries through unmap_vmas and releases memory for the page
table (via free_pgtables). The cost of these two functions
are correlated with the number of physical pages used by the
process. As fuzzing leads to repeated, short executions, such
bookkeeping introduces considerable memory management
overhead. In contrast to these active memory management
functions, sys_mmap only accounts for 7% memory manage-
ment overhead of ASan. This is the expense for reserving all
virtual memory areas. However, large areas that are actively
accessed by ASan incur considerable additional expenses as
detailed above.

For completeness, we note that our analysis finds that ASan
performs excessive “always-on” logging (18.86%) by default,
and that ASan’s initial poisoning of global variables (10.58%)
is inefficient. Combined, these additional sources of overhead
account for 29.44% overhead. We address these engineering
shortcomings in our evaluation, but they are neither our core
contributions nor the choke point in fuzzing with ASan.

3 FuZZan design

FuZZan has two design goals: (1) define new light-weight
metadata structures, and (2) automatically switch between
metadata structures depending on the runtime execution pro-
file. In this section, we present how we design each component
of FuZZan to achieve both goals, as illustrated in Figure 1.

3.1 FuZZan Metadata Structures
To minimize startup/teardown costs while maintaining rea-
sonable access costs, FuZZan introduces two new metadata
structures: (i) a Red Black tree (RB-tree) metadata structure,
which has low startup and teardown costs, but has high per-
access costs; and (ii) min-shadow memory, which has medium
startup/teardown costs and low per-access costs (on par with
ASan). Table 2 shows a qualitative comparison of the dif-

FuZZan Min-
Shadow memory

Fuzzer

Fuzzing
Module

Metadata
structure
selector

(3) Switch to
 selected
 metadata
 structure
 (§ 3.2)

(1) Measure target program
 Behavior (§ 3.2.1)

(2) Calculate
 the best
 metadata
 structure
 (§ 3.2.2)

Dynamic feedback

FuZZan
RB-tree

ASan
shadow memorySwitch

FuZZan
sampling

Target

Figure 1: Overview of FuZZan’s architecture and workflow.

Metadata Structures Startup/
Teardown Cost Access Cost

ASan shadow memory High Low

FuZZan
Customized RB-tree Low High
Min-shadow memory Medium Low

Table 2: Comparison of metadata structures.

Address area

 1
0x10007.. ~
0x10008..

 2
0x10008.. ~
0x10009..

 . ……..

 . ……..

...
0x02008.. ~
0x02009..

N
0xffffe.. ~
0xfffff..

Hash function
(address)

HashMap (optional)

Address Status

1 0x100.. Normal

2 0x200.. Normal

3 0x300.. Normal

Cache (optional)

Search Search
Fail

Insert/
Delete

One time
Insert/
Delete

One time
Range
Search

Figure 2: Design of FuZZan’s customized RB-tree.

ferent metadata schemes that we propose in this section, see
Table 4 for quantitative results. The RB-tree is optimal for
short executions with few metadata accesses as it emphasizes
low startup and teardown costs, while min-shadow memory is
best suited for executions with a mid-to-high number of meta-
data accesses as it has lower per metadata access costs while
still avoiding the full startup/teardown overhead imposed by
ASan’s shadow memory.

3.1.1 Customized RB-Tree

To optimize ASan’s metadata structure for test cases where
a fuzz testing application only executes for a very short time
with few metadata accesses, we introduce a customized RB-
tree, shown in Figure 2. Nodes in the RB-tree store the red-
zone for each object. Although each metadata access opera-
tion (insert, delete, and search) in the RB-tree is slower than
its counterpart in the shadow memory metadata structure, our
RB-tree has the following benefits: (i) low total memory over-
head (leading to low startup/teardown overhead); (ii) removal
of poisoning/un-poisoning page faults (as each RB-tree node
compactly stores the redzone addresses and these nodes are
grouped together in memory); and (iii) a faster range search
than shadow memory for operations such as memcpy. For ex-
ample, in order to check memcpy, ASan must validate each
byte individually using shadow memory. However, in our ap-
proach, we can verify such operations through only two range
queries for memcpy’s source and destination memory address
range.

In our RB-tree design, when an object is allocated (e.g.,
through malloc), the range of the object’s high address red-
zone is stored in a node of the RB-tree. During a query, if

4

Stack

Heap (4TB)

Shadow

Bad

Shadow

BSS & Data
& Text

Stack

Heap (4TB)

Shadow

Bad

Shadow

BSS & Data
& Text

Bad

Shadow

Stack (1GB)

Heap (1GB)

BSS & Data
& Text (2GB)

20TB
(Heap +
Shadow)

4GB

16TB
(Shadow
memory)

512MB
(Shadow
memory)

Address sanitizer memory mapping

FuZZan min-shadow memory mapping

Bad

Shadow

Stack (1GB)

Heap (1GB)

BSS & Data
& Text (2GB)

Figure 3: ASan and min-shadow memory modes’ memory
mapping on 64-bit platforms. ASan (top) reserves 20TB mem-
ory space for heap and shadow memory, conversely, min-
shadow memory mode (bottom) reserves 4512MB memory
space for heap and shadow memory. Each application’s stack,
heap, and other sections (BSS, data, and text) map to the corre-
sponding shadow regions. Further, the shadow memory region
is mapped inaccessible.

the address range of the target is lower than the start address
of the node, we search the left subtree (and vice versa). If
the address is not found in the tree, it is a safe memory ac-
cess. During redzone removal, the requested address range
may only be a subset of an existing node’s range (and not
the full range of a target node in the RB-tree). In this case,
the RB-tree deletes the existing RB-tree node, creates new
RB-tree nodes which have non-overlapping address ranges
(e.g., the left and right side of an overlapped area), and inserts
these nodes into the RB-tree. Since we reuse ASan’s memory
allocator and memory layout (e.g., redzones between objects
and a quarantine zone for freed objects), FuZZan provides the
same detection capability as ASan.

3.1.2 Min-shadow memory

The idea behind Min-shadow memory (for executions with
a mid-to-high number of metadata accesses) is to limit the
accessible virtual address space, effectively shrinking the size
of the required shadow memory. As the size of shadow mem-
ory is a key driver of overhead in the fuzzing environment,
this enhances performance.

Figure 3 illustrates how min-shadow memory converts a
64-bit program running in a 48-bit address space to run in a
32-bit address space window (1GB for the stack, 1GB for the
heap, and 2GB for the BSS, data, and text sections combined).
Note that pointers remain 64 bits wide and the code remains
unchanged: the mapped address space is simply restricted, al-

lowing min-shadow memory to have a partial shadow memory
map. To shrink a program’s memory space, we move the heap
(by modifying ASan’s heap allocator) and remap the stack
to a new address space. Min-shadow memory remaps parts
of the address space but programs remain 64-bit programs.
To accommodate larger heap sizes, we create additional min-
shadow memory binaries with heap sizes of 4GB, 8GB, and
16GB.

Our approach allows testing 64-bit code with 64-bit point-
ers without having to map shadow tables for the entire address
space. We disagree with the recommendation of the ASan
developers to compile programs as 32-bit executables, as
changing the target architecture, pointer length, and data type
sizes will hide bugs. Furthermore, min-shadow memory pro-
vides greater flexibility compared to using the x32 ABI [53]
mode (i.e., running the processor in 64-bit mode but using 32-
bit pointers and arithmetic, limiting the program to a virtual
address space of 4GB), as min-shadow memory can provide
various heap size options.

3.2 Dynamic metadata structure switching

Dynamic metadata structure switching automatically selects
the optimal metadata scheme based on observed behavior.
At the beginning of a fuzzing campaign, dynamic metadata
structure switching assesses the initial behavior and then peri-
odically samples behavior, adjusting the metadata structure
if necessary. Our intuition for dynamic metadata structure
switching is that, during fuzzing, metadata access patterns
and memory usage remain similar across runs and change
in phases. While the fuzzer is mutating a specific input, the
executions of the newly created inputs are similar regarding
their control flow and memory access patterns compared to
the source input. However, new coverage may lead to dif-
ferent execution behaviors. We therefore design a dynamic
metadata structure switching technique that periodically and
conditionally samples the execution and adjusts the underly-
ing metadata structure according to the observed execution
behavior.

Dynamic metadata structure switching compiles the pro-
gram in four different ways in preparation for fuzzing: ASan,
RB-tree, min-shadow memory, and sampling mode. The sam-
pling mode repeatedly samples the runtime parameters and
then selects the optimal metadata structure. The selection
of the optimal metadata structure is governed by FuZZan’s
metadata structure switching policy.

3.2.1 Sampling mode

The sampling mode measures the behavior of the target pro-
gram using the min-shadow memory-1GB metadata mode
and, based on the behavior, reports the currently optimal meta-
data structure. The sampling mode profiles the following pa-
rameters: (i) the number of metadata accesses during insert,

5

delete, and search; and (ii) memory consumption. Note that
this information can be collected by simple counters: profiling
is therefore light-weight.

Dynamic metadata structure switching starts in sampling
mode and selects the optimal mode based on the observed
behavior. Dynamic metadata structure switching then period-
ically (e.g., every 1,000 executions) and conditionally (e.g.,
when the fuzzer starts mutating a new test case) samples exe-
cutions to select the optimal metadata structure based on the
current behavior. To reduce the cost of periodic sampling, dy-
namic metadata structure switching implements a continuous
back-off strategy that gradually increases the sampling inter-
val as long as the metadata structure does not change (similar
to TCP’s slow-start [17]). Note that bugs may be triggered
during sampling mode. As such, we maintain ASan’s error
detection capabilities while sampling to ensure that we do not
miss any bugs.

3.2.2 Metadata structure switching policies

Our metadata structure switching policy is based on a map-
ping of metadata access frequency to the corresponding meta-
data structure. This heuristic is relatively simple in order to
achieve a low sampling overhead. To determine the best cut-
off points, we compile all 26 applications in Google’s fuzzer
test suite in two different ways: RB-tree and min-shadow
memory. We then test these different configurations against
50,000 recorded inputs and determine the best metadata struc-
ture depending on the observed parameters, measuring exe-
cution time. Profiling reveals that the frequency of metadata
access (insert, delete, and search) is the primary factor that
influences metadata structure overhead, which confirms our
original assumption. In this policy, depending on the meta-
data access frequency, we select different metadata structures
(based on statistics from profiling): RB-tree if there are fewer
than 1,000 accesses; and min-shadow memory if there are
more than 1,000 accesses. Additionally, if the selected heap
size goes beyond a threshold, we sequentially switch to other
modes (min-shadow memory-4G, 8G, 16G, and ASan), thus
increasing heap memory for continuous fuzzing.

4 Implementation

We implement FuZZan’s two metadata structures and dy-
namic metadata structure switching mode on top of ASan
in LLVM [28] (version 7.0.0). We support and interact with
AFL [57] (version 2.52b). To address the other sources of
overhead in ASan (shown in Table 1), we also implement two
additional optimizations: (i) removal of unnecessary initial-
ization; and (ii) removal of unnecessary logging. Our imple-
mentation consists of 3.5k LOC in total (mostly in LLVM,
with minor extensions to AFL).
RB-tree. The RB-tree requires modifications to ASan’s mem-
ory access instrumentation, as our RB-tree is not based on

a shadow memory metadata structure. Thus, we modify all
memory access checks, including interceptors, to use the ap-
propriate RB-tree operations instead of the equivalent shadow
memory operations. As an optimization, and for compatibil-
ity with min-shadow memory mode, the RB-tree mode also
reserves 1GB for the heap memory allocator. A compact heap
reduces memory management overhead. The RB-tree mode is
used when fuzz tests only execute for a very short time with
few metadata accesses (i.e., they allocate relatively a small
amount of memory).

Min-shadow memory. Unlike the RB-tree, we are able to
repurpose ASan’s existing memory access checks, as the min-
shadow memory metadata structure is based on a shadow
memory scheme. To shrink a 64-bit program’s address space,
we modify ASan’s internal heap setup and remap the stack
using Kroes et al.’s linker/loader tricks [22]. More specif-
ically, based on this script, we hook __libc_start_main
using “LD_PRELOAD” and then remap the stack to a new
address, update rbp and rsp, and then call the original
__libc_start_main. This allows us to reduce ASan’s
shadow map requirements from 16TB of mapped (but not
necessarily allocated) virtual memory to 512MB (1 bit of
shadow for each byte in our 4GB address space window).
We also create an additional 192MB shadow memory for
ASan’s secondary allocator and dynamic libraries (which are
remapped above the stack). Finally, we implement four differ-
ent min-shadow memory modes with increasing heap sizes
(1GB, 4GB, 8GB, and 16GB) to handle the different memory
requirements of a variety of programs.

Heap size triggers. As previously stated, min-shadow mem-
ory is configured for different heap sizes. We therefore use
out of memory (OOM) errors to trigger callbacks that notify
FuZZan to increase the heap size.

AFL modifications. The target program is compiled once
per FuZZan mode. By default, AFL uses a random number
generator (RNG) to assign an ID to each basic block within
the target program. Unfortunately, this would result in the
same input producing different coverage maps across the set
of compiled targets, breaking AFL’s code coverage analysis.
We therefore modify AFL to use the same RNG seed across
the set of compiled targets. This ensures that the same input
produces the same coverage map across all compiled variants.

Removing unnecessary initialization. ASan makes a num-
ber of global constructor calls on program startup, performing
several do_wp_page calls for copy-on-write. These construc-
tor calls are unnecessarily repeated each time AFL executes
a new test input, leading to redundant operations. Unfortu-
nately, the AFL fork server is unaware of ASan’s initialization
routines. Therefore, to remove unnecessary (re-)initialization
across fuzzing runs, we modify ASan’s LLVM pass so that
global variable initialization occurs before AFL’s fork server
starts. This is achieved by adjusting the priority of global
constructors which contain ASan’s initialization function.

6

Removing unnecessary logging. ASan provides logging
functionality for error reporting (e.g., saving allocation sizes
and thread IDs during object allocation). Unfortunately, this
logging functionality introduces additional page faults and
performance overhead. However, this logging is unneces-
sary because fuzzing inherently enables replay by storing
test inputs that trigger new behavior. Complete logging infor-
mation can be recovered by replaying a given input with a
fully-instrumented program. We therefore identify and disable
ASan’s logging functionality (e.g., StackDepot) for fuzzing
runs, allowing it to be reenabled for reportable runs.

5 Evaluation

We provide a security and performance evaluation of FuZZan.
First, we verify that FuZZan and ASan have the same error-
detection capabilities. Second, we evaluate the efficiency of
FuZZan’s new metadata structures and dynamic metadata
structure switching mode using deterministic input from a
record/replay infrastructure to ensure fair comparisons. Next,
to consider the random nature of fuzzing and to show FuZ-
Zan’s real-world impact, we evaluate FuZZan’s efficiency
without deterministic input. Here we evaluate the number of
code paths found by FuZZan in a 24 hour time period, demon-
strating the impact of FuZZan’s increased performance. We
also measure FuZZan’s bug finding speed by using known
bugs in Google’s fuzzer test suite to verify that FuZZan maxi-
mizes fuzzing execution speed while providing the exact same
bug detection capabilities as ASan. Finally, we port FuZZan to
another sanitizer (MSan) [48] and another AFL-based fuzzer
(MOpt-AFL) [31] to verify its flexibility.
Evaluation setup. All of our experiments are performed on
a desktop running Ubuntu 18.04.3 LTS with a 32-core AMD
Ryzen Threadripper 2990WX, 64GB of RAM, 1TB SSD,
and Simultaneous MultiThreading (SMT) disabled (to guar-
antee a single fuzzing instance is assigned to each physical
core). Across all experiments, we apply FuZZan to AFL’s
fork server mode, which is a widely-used and highly opti-
mized out-of-process fuzzing mode. We evaluate FuZZan on
all applications in the Google fuzzer test suite [11] and other
widely used real-world software.
Evaluation strategy. Evaluating fuzzing effectiveness is chal-
lenging. In a recent study of how to evaluate fuzzing by Klees
et. al. [21], the authors find that the inherent randomness of
the fuzzer’s input generation can lead to seemingly large but
spurious differences in fuzzing effectiveness. However, we
are at an advantage as we do not need to compare different
fuzzers nor do we change the input generation. We therefore
record the fuzzer-generated inputs during a regular run of
AFL, and then replay these recorded inputs to compare our
different ASan optimizations to the same baseline, effectively
controlling for randomness in input generation by using the
same input for all experiments. For our experiments we record

CWD (ID) Good tests
(Pass/Total)

Bad tests
(Pass/Total)

Stack-based Buffer Overflow (121) 2,432 / 2,432 2,314 / 2,432
Heap-based Buffer Overflow (122) 1,594 / 1,594 1,328 / 1,594
Buffer Under-write (124) 682 / 682 641 / 682
Buffer Over-read (126) 524 / 524 359 / 524
Buffer Under-read (127) 682 / 682 641 / 682
Total 5,914 / 5,914 5,283 / 5,914

Table 3: Three different metadata structure modes’ detection
capability based on the Juliet Test Suite for memory corrup-
tion CWEs. FuZZan and ASan have identical results. Good
tests have no memory corruption to check for false positives.
Bad tests are intentionally buggy to check for false negatives.

the first 500,000 executions for replay, yielding a large enough
test corpus for reasonable performance comparisons. We also
undertake a real-world fuzzing campaign (i.e., without in-
hibiting fuzzing randomness by record/replay) to measure
FuZZan’s real-world impact on code path exploration. Fi-
nally, Klees et. al. demonstrate the importance of the initial
seed(s) when evaluating fuzz testing, as performance can vary
substantially depending on what seed is used. We therefore
compare two scenarios: (i) starting with the empty seed; and
(ii) starting with a set of valid seeds (we use Google’s provided
seeds for the input record/replay experiment and randomly
selected seeds of the right file type for our real-world fuzz
testing).

5.1 Detection capability
We verify that FuZZan and ASan detect the same set of bugs
in three different ways. First, we use the NIST Juliet test
suite [35], which is a collection of test cases containing com-
mon vulnerabilities based on Common Weakness Enumer-
ation (CWE). We use the full Juliet test suite for memory
corruption CWEs to verify FuZZan’s capability to detect the
same classes of bugs as ASan, without introducing false posi-
tives or negatives. Second, to verify that FuZZan and ASan
also have the same detection capability under fuzz testing, we
use the Google fuzzer test suite and our recorded input corpus.
Finally, we leverage the complete set of ASan’s public unit
tests as a further sanity check.

For the Juliet test suite (Table 3), we select CWEs related to
memory corruption bugs and obtain the same detection results
from the three different modes (ASan’s shadow memory, RB-
tree, and min-shadow memory). To validate FuZZan against
ASan on the Google fuzzer test suite, we compare AFL crash
reports across the full set of target programs in the Google
fuzzer test suite with our recorded inputs (to identify both false
positives and false negatives). Note that we force ASan to
crash (the default setting under fuzz testing) when a memory
error happens as fuzzers depend on program crashes to detect
bugs. As expected, FuZZan’s different modes all obtain the
same crash results as ASan. However, we encounter minor

7

differences between FuZZan and ASan when sanity-checking
on the ASan unit tests. These differences are due to internal
changes we made when developing FuZZan, such as min-
shadow memory’s changed memory layout (failed test cases
include features such as fixed memory addresses).

5.2 Efficiency of new metadata structures

We perform input record/replay fuzz testing to evaluate the
effectiveness of FuZZan’s new metadata structures. Doing so
isolates the effects of our metadata structures by removing
most of the randomness/variation from a typical fuzzing run.

Over the full Google fuzzer test suite, the RB-tree, without
any other optimization, shows shorter execution times than
ASan if the target application has less than 1,000 metadata
accesses; conversely, the RB-tree is slower than ASan when
the target application has more than 1,000 metadata accesses.
On average, as shown in Table 4, several applications in the
Google fuzzer test suite have more than 1,000 metadata ac-
cesses, and so RB-tree is overall slower than ASan on average.

Despite being slower on average, the RB-tree can be faster
on individual applications and inputs. For instance, FuZZan
in RB-tree mode demonstrates a 19% performance improve-
ment (up to 45% faster) for 15 applications (the remaining 11
applications show higher overhead compared to ASan) when
benchmarked using the inputs generated from an empty seed.
On the subset of applications for which seeds are provided,
RB-tree shows less performance improvement (17% and up to
39% faster) for 14 applications (the remaining 12 applications
show higher overhead than ASan) when benchmarked using
inputs generated from those seeds as provided seeds help
to create valid input, lengthening execution times and thus
metadata accesses. Note that RB-tree shows the best fuzzing
performance when the target application (e.g., c-ares) has
less 1,000 metadata access. Additionally, even for applica-
tions where RB-tree is slower across all inputs, it is still faster
on inputs with few metadata accesses. The variable perfor-
mance of RB-tree, which is highly dependent on the number
of metadata accesses, highlights the need for dynamic meta-
data structure switching to automatically select the optimal
metadata structure.

Min-shadow memory mode, without additional optimiza-
tion, outperforms ASan on all 26 programs (for both empty
and provided seeds), as shown in Table 4. More specifically,
the average improvement is 45% when starting with an empty
seed and 43% when starting with the provided seeds. While
different min-shadow memory heap configurations show grad-
ual increases in memory overhead (from 1GB to 16GB, in line
with the heap size), all of them outperform ASan (at worst,
min-shadow memory is still 36% faster than ASan with a
provided seed).

Additionally, both metadata configurations can utilize our
two engineering optimizations; i.e., removing logging and
modifying ASan’s initialization (as described in § 4). Table 5

Modes Empty seed Provided seed

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

Native 199 - - 274 - -
ASan 809 306 - 1,105 303 -
RB-tree 1,541 673 90 3,308 1,106 199
Min-1G 443 122 -45 632 131 -43
Min-4G 465 133 -43 666 143 -40
Min-8G 467 134 -42 685 150 -38
Min-16G 477 139 -41 710 159 -36

Table 4: Comparison between four min-shadow memory
modes, RB-tree, Native, and ASan execution overhead during
input record and replay fuzz testing with empty and provided
seed sets. The time (s) indicates the average of all 26 applica-
tions’ execution time during testing. Positive percentage (e.g.,
20%) denotes overhead while negative percentage indicates a
speedup.

Modes Empty seed Provided seed

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

Logging-Opt. 613 208 -24 891 225 -19
Init-Opt. 686 244 -15 987 260 -11
Logging+Init 552 177 -32 826 201 -25
Min-Shadow 443 122 -45 632 131 -43
Min-Shadow-Opt. 385 93 -52 574 109 -48
Dynamic 387 94 -52 578 111 -48

Table 5: Comparison between FuZZan’s three different opti-
mization modes, native min-shadow memory (1G) mode, and
min-shadow memory (1G) mode with FuZZan’s two optimiza-
tions, and dynamic metadata structure switching (Dynamic)
mode execution overhead during all 26 applications’ input
record and replay fuzz testing.

shows that the average improvement of removing unnecessary
logging is 24% when starting with an empty seed and 19%
when starting with the provided seeds. Similarly, modifying
the initialization sequence improves performance by 15%
when starting with an empty seed and by 11% when start-
ing with the provided seeds. Combining the two engineering
optimizations with min-shadow memory demonstrates syner-
gistic effects: the combined performance is 52% (7% better
than native min-shadow memory) faster for empty seeds, and
48% (5% better than native min-shadow memory) faster for
provided seeds.

Overall, FuZZan’s metadata structures show better perfor-
mance than ASan’s shadow memory for all 26 Google fuzzer
test suite applications. As shown in Table 6, the main reasons
for FuZZan’s improvement are: (i) the smaller memory space
reduces memory management overhead as page table man-
agement is more lightweight and incurs fewer page faults, (ii)
our two engineering optimizations further reduce overhead
and number of page faults by removing unnecessary opera-

8

Modes
ASan’s

init time
ms (%)

ASan’s
logging time

ms (%)

Memory
manage time

ms (%)

Page fault
#

Native 0.00 (0.00%) 0.00 (0.00%) 0.05 (11.49%) 2,569
ASan 0.17 (10.58%) 0.30 (18.86%) 0.63 (40.16%) 11,967
Min 0.10 (9.51%) 0.01 (1.33%) 0.24 (24.77%) 7,386

Min-Opt. 0.00 (0.00%) 0.00 (0.00%) 0.24 (24.71%) 6,139

Table 6: Comparison between native, ASan, min-shadow
memory (1G), two optimizations with min-shadow memory
executions with a breakdown of time spent in memory man-
agement, and time spent for ASan’s initialization and logging.
Results are aggregated over 500,000 executions of the full
Google fuzzer test suite. Times are shown in milliseconds,
and % denotes the ratio between single execution time and
each section execution’s time.

tions, and (iii) the min-shadow memory mode has the same
O(1) time complexity for accessing target shadow memory as
accessing the original ASan metadata. However, we also ob-
serve that the RB-tree is faster than min-shadow memory for
some configurations and programs (e.g., c-ares-CVE). This
motivates the need for dynamic metadata structure switching,
which observes program behavior and dynamically selects
the best metadata structure based on this behavior.

5.3 Efficiency of dynamic metadata structure
As described in § 3.2, the dynamic metadata structure switch-
ing mode leverages runtime feedback to select the optimal
metadata structure, dynamically tuning fuzzing performance
according to runtime feedback. The intuition behind the dy-
namic metadata structure switching mode is that (i) no single
metadata structure is best across all applications, (ii) the best
metadata structure is not known a priori, so the analyst cannot
pre-select the optimal metadata structure, and (iii) fuzzing
goes through phases, e.g., alternating between longer running
tests (e.g., exploring new coverage) and shorter running tests
(e.g., invalid input mutations searching for new code paths).
A consequence of the phases of fuzzing is that the same meta-
data structure is not optimal for every input to a given ap-
plication. To verify the effectiveness of dynamic metadata
structure switching, which is implemented based on these
intuitions, we apply dynamic metadata structure switching
mode to fuzz testing for seven widely used applications for
fuzzing and all 26 applications’ in Google’s fuzzer test suite.

Our evaluation of dynamic metadata structure switching
validates our intuitions, as shown in Figure 4. Observe that
different applications are dominated by different metadata
structures, e.g., c-ares for RB-tree and pngfix for min-
shadow memory. This is because dynamic metadata structure
switching automatically selects the optimal metadata struc-
ture (which is unknown a priori). Because dynamic metadata
structure switching is automatic, it prevents users from mak-
ing errors such as selecting RB-tree for applications with a

c-ares vorbis pngfix size nm
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

ASan shadow memory FuZZan RB-tree

FuZZan Min-shadow-1G FuZZan Min-shadow-4G

FuZZan Min-shadow-8G FuZZan Min-shadow-16G

270 350 60 95 682

Figure 4: Evaluating the frequency of metadata structure
switching and each metadata structure selection over the first
500,000 tests each for c-ares and vorbis in Google’s fuzzer
test suite and pngfix, size, and nm. The number on each bar
indicates the total metadata switches.

large number of metadata accesses, and removes the need
for any user-driven profiling to make metadata decisions.
Further, dynamic metadata structure switching scales along-
side with the required memory of applications as it increases
when the fuzzer finds deeper test cases, as evidenced by size,
pngfix, or nm switching to different min-shadow memory
modes (4GB, 8GB, and 16GB heap sizes), without user in-
tervention. Without dynamic metadata structure switching,
inefficient min-shadow memory modes would be used at the
beginning of fuzzing campaigns, or users would have to pause
and restart fuzzing campaigns to change metadata modes.

As an extreme example highlighting the need for auto-
matic metadata switching, the nm benchmark changes meta-
data structures 682 times, underscoring the infeasibility of
having a human analyst determine the single best metadata
structure.

As a result of these factors, FuZZan’s dynamic metadata
structure switching mode improves performance over ASan
by 52% when starting with empty seeds and 48% when start-
ing with non-empty seeds. Further, ASan has 306% and FuZ-
Zan has 94% (212% less) overhead with empty seeds and
ASan has 303% and FuZZan has 111% (192% less) over-
head with non-empty seeds compared to native execution.
Note that dynamic metadata structure switching has identical
fuzzing performance to using min-shadow memory with 1GB
heap alone, and improves performance over RB-tree up to
870%. Consequently, automating metadata selection is not
adding noticeable overhead, while substantially improving
user experience. We recommend using dynamic metadata
structure switching mode for the following four reasons: (i) if
the target application exceeds FuZZan’s heap memory limit
(1GB), dynamic metadata structure switching automatically
increases the heap size for the few executions that require it
(a fixed heap size results in false positive crashes due to heap
memory exhaustion), (ii) preventing users from selecting an

9

Programs
Native ASan FuZZan

exec
#

path
#

exec
#

path
#

exec
(%)

path
(%)

cxxfilt 86M 2,769 33M 2,442 51M (55%) 2,651 (9%)
file 29M 1,126 7M 763 9M (29%) 845 (11%)
nm 51M 1,272 7M 822 12M (71%) 872 (6%)
objdump 95M 883 15M 567 17M (13%) 595 (5%)
pngfix 36M 971 18M 912 33M (83%) 982 (8%)
size 52M 703 17M 626 32M (88%) 656 (5%)
tcpdump 70M 3,587 11M 1,540 20M (82%) 2,032 (32%)
Total 419M 11,311 108M 7,672 174M (61%) 8,633 (13%)

Table 7: Evaluating FuZZan’s total execution number and
unique discovered path for 24 hours fuzz testing with provided
seeds. The (M) denotes 1,000,000 (one million) and ratio (%)
is the ratio between ASan and FuZZan.

incorrect metadata structure, (iii) using only one metadata
structure (e.g., min-shadow memory) may miss the opportu-
nity to further improve throughput, as, in some cases, RB-tree
(or some future metadata structure) may be faster than min-
shadow memory; (iv) manually selecting a metadata structure
requires extra effort (e.g., measuring each metadata structure’s
efficiency for the target application), which dynamic metadata
structure switching mode avoids by automatically selecting
the optimal metadata structure.

5.4 Real-world fuzz testing

Our experiments validating FuZZan use a record/replay ap-
proach to avoid any impact of randomness, allowing meaning-
ful comparisons to a baseline. However, real-world fuzzing
is highly stochastic, and so we also evaluate FuZZan in the
context of several real-world end-to-end fuzzing campaigns
without deterministic input record/replay. For this experiment,
we select the following widely used programs: cxxfilt, nm,
objdump, size (all from binutil-2.31), file (version 5.35),
pngfix (from libpng 1.6.38) and tcpdump (version 4.10.0).
Klees et al. [21] select and test cxxfilt, nm, and objdump in
their fuzzing evaluation study. The remaining four programs
(size, file, pngfix, and tcpdump) are widely tested by re-
cent fuzzing works [1, 3, 6, 26, 36, 46]. For each binary, we
run a fuzzing campaign. Each campaign is conducted for 24
hours and repeated five times. We measure the number of
total executions and discovered unique paths when fuzzing
with seeds from the seed corpus of each program with the
right type file and three different configurations: native, ASan,
and FuZZan’s dynamic metadata structure switching mode,
and report the mean over the five campaigns.

As a result, FuZZan improves throughput over ASan by
61% (up to 88%). Interestingly, FuZZan discovers 13% more
unique paths given the same 24 hours time due to improved
throughput. Our evaluation also shows that improved through-
put increases the possibility of finding more bugs in the same
amount of time, as we discuss next.

Programs
ASan
TTE
(s)

FuZZan
Type (source)TTE

(s)
rate
(%)

c-ares 45 25 46 BO (ares_create_query.c:196)
json 29 11 61 AF (fuzzer-parse_json.cpp:50)
libxml2 7,314 4,194 43 BO (CVE-2015-8317)
openssl-1.0.1f 443 336 24 BO (t1_lib.c:2586)
pcre2 7,056 4,020 43 BO (pcre2_match.c:5968)
Total 14,887 8,586 42 -

Table 8: Evaluating FuZZan’s bug finding speed. The TTE
denotes the mean time-to-exposure. The AF is assertion error
and the BO denotes buffer overflow.

Modes time
(s)

vs.
Native

(%)

vs.
MSan
(%)

vs.
MSan
nolock

(%)
Native 146 - - -
MSan 14,074 9,575 - -
MSan-nolock 386 165 -97 -
Min-16G 335 130 -98 -13

Table 9: Comparison between Native, MSan, MSan-nolock,
and min-shadow memory execution overhead during input
record and replay fuzz testing with provided seed sets. MSan-
nolock disables lock/unlock for MSan’s logging depots. Time
(s) indicates the average of execution time. Positive percent-
ages denote overhead, negative percentages denote speedup.

5.5 Bug finding effectiveness
FuZZan increases throughput while maintaining ASan’s bug
detection capability, potentially enabling it to find more bugs.
To demonstrate this, we evaluate FuZZan’s bug finding speed
and compare it to a fuzzing campaign with ASan. In this
evaluation, we target five applications in Google’s fuzzer test
suite. These applications are chosen because we found bugs in
them (using ASan and dynamic metadata structure switching
mode) within a 24 hour fuzzing campaign. We use the seeds
provided by the test suite and repeated each campaign five
times. Note that we do not replay recorded inputs during these
campaigns, instead letting the fuzzer generate random inputs.
Table 8 shows the mean time (over five campaigns) to find
each bug. Notably, FuZZan finds all bugs up to 61% (mean
42%) faster than ASan, and is faster in all cases. This exper-
iment emphasizes our belief that throughput is paramount
when fuzzing with sanitizers.

5.6 FuZZan Flexibility

Appling FuZZan to Memory Sanitizer. Like ASan, numer-
ous sanitizers use shadow memory for their metadata struc-
ture [47]. For example, other popular sanitizers, such as Mem-
ory Sanitizer (MSan) [48] and Thread Sanitizer (TSan) [42],
also rely on shadow memory for metadata. FuZZan optimizes
sanitizer usage of shadow memory without modifying the
stored shadow information or how the sanitizer uses that infor-

10

mation. Consequently, porting our shadow metadata improve-
ments in FuZZan from ASan to other sanitizers is a simple
engineering exercise. To demonstrate this, we port FuZZan
to MSan. In so doing, we shrink MSan’s memory space to
implement min-shadow memory 16G for MSan (1GB for the
stack, 16GB for the heap, and 2GB for the BSS, data, and
text sections combined). We only implement one metadata
mode for our MSan proof-of-concept to validate our claim
that applies FuZZan to other shadow memory based sanitizers
is an engineering exercise.

Table 9 summarizes MSan’s performance overhead on dif-
ferent modes for all 26 evaluated applications. Initially, min-
shadow memory shows high overhead—around 96 times na-
tive. Analyzing this, we found that MSan’s fork() interceptor
locks all logging depots before fork() and similarly unlocks
them afterwards to avoid deadlocks. However, as explained
in § 4, locking/unlocking logging depots is unnecessary for
fuzzing because these logging depots exist for bug reporting
and fuzzing inherently enables replay by storing test inputs
when the fuzzer finds bugs. We thus disable these lock/un-
lock functions to create the MSan-nolock mode, which has
reasonable overhead (2.6 times that of native).

FuZZan’s MSan min-shadow memory 16G mode shows
13% performance improvement compared to MSan-nolock
mode, demonstrating FuZZan’s efficacy when applied to
MSan. We expect that additional optimization and the ap-
plication of the dynamic switch mode will lead to even higher
performance improvement. We leave this engineering as fu-
ture work.
Applying FuZZan to MOpt-AFL. FuZZan is not cou-
pled to a particular fuzzer or fuzzer version. Most modern
fuzzers [2, 3, 31, 31] extend AFL, so our approach applies
broadly. To demonstrate this, we apply FuZZan to MOpt-
AFL [31], which is an efficient mutation scheduling scheme
to achieve better fuzzing efficiency. We modify MOpt-AFL
to add FuZZan’s profiling feedback and dynamic metadata
switching functions. To measure FuZZan’s impact on MOpt-
AFL, we select seven real-world applications (the same set as
Table 7) and fuzz them for 24 hours each, repeating the exper-
iment five times to control for randomness in the results. On
average, ASan-MOpt-AFL mode discovers 85% more unique
paths given the same 24 hours time due to MOpt-AFL’s ef-
fectiveness compared to ASan. Notably, FuZZan-MOpt-AFL
mode discovers 112% more unique paths (27% higher than
ASan-MOpt-AFL) due to the improved throughput.

6 Discussion

In this section, we summarize some potential areas for future
work, a possible security extension enabled by FuZZan, and
lessons learned in designing FuZZan.
Removing conflicts between sanitizers. ASan’s shadow
memory scheme conflicts with other sanitizers that are also

based on shadow memory, e.g., MSan and TSan. Each sani-
tizer interprets the shadow memory in a mutually exclusive
manner, prohibiting the use of multiple concurrent sanitiz-
ers. For example, ASan uses shadow memory as a metadata
store, while MSan prohibits access to the same memory range.
FuZZan’s new metadata structures can be adapted to avoid
this conflict, and enable true composition of sanitizers, since
we use lightweight, independent metadata structures. Each
sanitizer can map its own instance of our metadata structure,
and all sanitizers may coexist in a single process. However,
some engineering effort is required to port sanitizers to our
new metadata structures. An alternate approach would be
to have one metadata structure that stores information for
all sanitizers. Whether having a unified metadata structure
or a metadata structure per sanitizer is more efficient is an
interesting research question.
Possible security extension. Unfortunately, ASan’s virtual
memory requirements directly conflict with fuzzers’ abilities
to detect certain out-of-memory (OOM) bugs. For example,
fuzzers typically limit memory usage to detect OOM errors
when parsing malformed input. However, ASan’s large vir-
tual memory requirement masks OOM bugs, leaving them
undetected because of the difficulty of setting precise memory
limits. Consequently, using a compact metadata structure with
ASan not only improves performance, but also can enable an
extension of ASan’s policy to cover OOM bugs.
Lessons Learned. Our initial metadata design leveraged a
two-layered shadow memory metadata structure that split
metadata lookups into two parts: a lookup into a top-level
metadata structure, followed by a lookup into a second-level
metadata structure a la page tables. While this design vastly
reduced memory consumption and management overhead, the
additional runtime cost per metadata access of the additional
indirection resulted in the two-layer structure being slower
than ASan in all cases.

For dynamic metadata structure switching, we evaluated
two additional policies: (i) utilizing more detailed metadata
access information such as each object type’s (e.g, stack)
metadata access (e.g., insert) count and each operation’s mi-
crobenchmark results, and (ii) running each metadata mode,
measuring their execution time, and selecting the fastest meta-
data mode. In our evaluation, the additional sampling com-
plexity of these policies outweighed any gains from more
precisely selecting a metadata structure.

7 Related Work

7.1 Reducing Fuzzing Overhead
Several approaches reduce the overhead of fuzzing. One ap-
proach is to reduce the execution time of each iteration. AFL
supports a deferred fork server which requires a manual call
to the fork server. The analyst is encouraged to use the de-
ferred fork server, and manually initiate the fork server as

11

late as possible to reduce, not only overhead from linking and
libc initializations, but also overhead from the initialization of
the target program. Deferred mode, however, cannot reduce
the teardown overhead of heavy metadata structures. AFL’s
persistent mode and libFuzzer eliminate the overhead from
creating a new process. However, these approaches require
manual effort, and users must know the target programs. Xu et
al. [55] implement several new OS primitives to improve the
efficiency of fuzzing on multicore platforms. Especially, by
supporting a new system call, snapshot instead of fork, they
reduce the overhead of creating a process. Moreover, they re-
duce the overhead from file system contention through a dual
file system service. However, this approach requires kernel
modifications for the new primitives, and does not reduce the
overhead of sanitizers.

Another approach is to improve fuzzing itself so that it
can find more crashes within the same amount of executions.
AFLFast [3] adopts a Markov chain model to select a seed. If
inputs mutated from a seed explore more new paths, the seed
has higher probability to be selected. With given target source
locations, AFLGo [2] selects a seed that has higher probabili-
ties to reach the source locations. Several approaches adopt
hybrid fuzzing, taint analysis, and machine learning to help
fuzzers explore more paths. SAVIOR [8] uses hybrid fuzzing,
combining it with concolic execution to explore code blocks
guarded by complex branch conditions. RedQueen [1] uses
taint analysis and symbolic execution for the same purpose.
VUzzer [40] also uses dynamic taint analysis and mutates
bytes which are related to target branch conditions to effi-
ciently explore paths. TIFF [18] infers the type of the input
bytes through dynamic taint analysis and uses the type infor-
mation to mutate the input. Matryoshka [7] uses both data
flow and control flow information to explore nested branches.
In addition to hybrid fuzzing with traditional techniques such
as symbolic and concolic executions, NEUZZ [46] adapts
neural network and sets the number of covered paths as an
objective function to maximize covered paths. Angora [6]
adapts both taint analysis and a gradient descent algorithm
to improve the number of covered paths. These approaches
do not reduce the execution time of each iteration. They are
therefore orthogonal to our work. Thus, we can use these
approaches to further increase fuzzing performance.

7.2 Optimizing Sanitizers

Since C/C++ programming languages are memory and type
unsafe languages, several sanitizers [47] target memory safety
violations [5, 23, 41, 48, 49] and type safety violations [14,
19, 24, 29]. Despite their broad use, sanitizers have several
limitations such as high overhead, limited detection abilities,
and incompatibility with other sanitizers.

To reduce sanitizer overhead, ASAP [52] and PartiSan [25]
disable check instrumentation on the hot path according to
their policies. The intuition of both approaches is that most

of the sanitizer’s overhead comes from checks on a few hot
code paths that are frequently executed (e.g., instrumenta-
tion in a loop). ASAP removes check instrumentation on the
hot path based on pre-calculated profiling results at compile
time. In PartiSan [25], Lettner et al., propose runtime par-
titioning to more effectively remove check instrumentation
based on runtime information during execution. However,
both approaches miss a main source of overhead when reduc-
ing the cost of ASan during fuzzing campaigns: the overhead
is due to memory management and not due to the low over-
head safety checks. As ASAP and PartiSan target the cost of
checks, they are complementary to FuZZan. To fuzz quickly,
there is an option to generate a corpus from a normal binary,
and then feed the corpus to an ASan binary. FuZZan can also
adopt this option for fast fuzzing.

Pina et al., [38] use multi-version execution to concurrently
run sanitizer-protected processes together with native pro-
cesses, synchronizing all versions at the system-call level. To
synchronize all versions, they use a system-call buffer and a
Domain-Specific Language [37] to resolve conflicts between
different program versions. Xu et al., [54] propose Bunshin
to reduce the overhead of sanitizers and conflicts based on
the N-version system through their check distribution, sani-
tizer distribution, and cost distribution policies. Since these
approaches are based on N-version systems, they increase
hardware requirements such as several dedicated cores and
at least N times of memory. Also, these approaches do not
address the fundamental problem of ASan memory overhead.

8 Conclusion

Combining a fuzzer with sanitizers is a popular and effective
approach to maximize bug finding efficacy. However, several
design choices of current sanitizers hinder fuzzing effective-
ness, increasing the runtime cost and reducing the benefit of
combining fuzzing and sanitization.

We show that the root cause of this overhead is the heavy
metadata structure used by sanitizers, and propose FuZZan to
optimize sanitizer metadata structures for fuzzing. We imple-
ment and apply these ideas to ASan. We design new metadata
structures to replace ASan’s rigid shadow memory, reduc-
ing the memory management overhead while maintaining the
same error detection capabilities. Our dynamic metadata struc-
ture adaptively selects the most efficient metadata structure for
the current fuzzing campaign without manual configuration.

Our evaluation shows that FuZZan improves performance
over ASan 52% when starting with empty seeds (48% with
Google’s seed corpus). Based on improved throughput, FuZ-
Zan discovers 13% more unique paths given the same 24
hours and finds bugs 42% faster. The open-source version
of FuZZan is available at https://github.com/HexHive/
FuZZan.

12

https://github.com/HexHive/FuZZan
https://github.com/HexHive/FuZZan

Acknowledgments

We thank the anonymous reviewers and our shepherd Julia
Lawall for their detailed feedback. This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 850868), NSF CNS-1801601,
and ONR award N00014-18-1-2674. Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the
views of our sponsors.

References

[1] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
Fuzzing with Input-to-State Correspondence. In Pro-
ceedings of the Network and Distributed System Security
Symposium (NDSS), 2019.

[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2017.

[3] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as Markov chain.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2016.

[4] Derek Bruening and Qin Zhao. Practical memory check-
ing with Dr. Memory. In Proceedings of the Annual
IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), 2011.

[5] Nathan Burow, Derrick McKee, Scott A Carr, and Math-
ias Payer. CUP: Comprehensive User-Space Protection
for C/C++. In Proceedings of the Asia Conference on
Computer and Communications Security (ASIACCS),
2018.

[6] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (SP), 2018.

[7] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka:
Fuzzing Deeply Nested Branches. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2019.

[8] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong
Zhou, Yulong Zhang, Long Lu, et al. SAVIOR: Towards
Bug-Driven Hybrid Testing. In Proceedings of the IEEE
Symposium on Security and Privacy (SP), 2020.

[9] Google. Address Sanitizer Found Bugs.
https://github.com/google/sanitizers/wiki/
AddressSanitizerFoundBugs.

[10] Google. Clusterfuzz. https://google.github.io/
clusterfuzz/.

[11] Google. Fuzzer test suite. https://github.com/
google/fuzzer-test-suite.

[12] Google. Kernel Address Sanitizer (KASan), a fast
memory error detector for the Linux kernel. https:
//github.com/google/kasan/wiki.

[13] Google. Libfuzzer tutorial. https://github.
com/google/fuzzer-test-suite/blob/master/
tutorial/libFuzzerTutorial.md.

[14] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer,
Cristiano Giuffrida, Herbert Bos, and Erik van der
Kouwe. TypeSan: Practical type confusion detection. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2016.

[15] Niranjan Hasabnis, Ashish Misra, and R Sekar. Light-
weight bounds checking. In Proceedings of the Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), 2012.

[16] Reed Hastings. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the USENIX Secu-
rity Symposium (SEC), 1992.

[17] Van Jacobson. Congestion avoidance and control. ACM
SIGCOMM computer communication review, 1988.

[18] Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Her-
bert Bos. TIFF: Using Input Type Inference To Improve
Fuzzing. In Proceedings of the Annual Computer Secu-
rity Applications Conference (ACSAC), 2018.

[19] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung
Lee, and Mathias Payer. HexType: Efficient Detection
of Type Confusion Errors for C++. In Proceedings of
the ACM Conference on Computer and Communications
Security (CCS), 2017.

[20] Linux kernel document. The Kernel Address Sanitizer
(KASAN). https://www.kernel.org/doc/html/
v4.14/dev-tools/kasan.html.

[21] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security (CCS), 2018.

[22] Taddeus Kroes, Koen Koning, Cristiano Giuffrida, Her-
bert Bos, and Erik van der Kouwe. Fast and generic

13

https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://google.github.io/clusterfuzz/
https://google.github.io/clusterfuzz/
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://github.com/google/kasan/wiki
https://github.com/google/kasan/wiki
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html

metadata management with mid-fat pointers. In Pro-
ceedings of the European Workshop on Systems Security
(EuroSec), 2017.

[23] Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing Use-after-free with Dangling Pointers Nulli-
fication. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2015.

[24] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and
Wenke Lee. Type Casting Verification: Stopping an
Emerging Attack Vector. In Proceedings of the USENIX
Security Symposium (SEC), 2015.

[25] Julian Lettner, Dokyung Song, Taemin Park, Per Larsen,
Stijn Volckaert, and Michael Franz. PartiSan: fast and
flexible sanitization via run-time partitioning. In Pro-
ceedings of the International Symposium on Research
in Attacks, Intrusions, and Defenses (RAID), 2018.

[26] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
program-state based binary fuzzing. In Proceedings
of the Joint Meeting on Foundations of Software Engi-
neering (FSE), 2017.

[27] LLVM. LibFuzzer – a library for coverage-guided fuzz
testing. https://llvm.org/docs/LibFuzzer.html.

[28] LLVM. The LLVM Compiler Infrastructure Project.
http://llvm.org/.

[29] LLVM. TySan: A type sanitizer. https://reviews.
llvm.org/D32199.

[30] Alexey Loginov, Suan Hsi Yong, Susan Horwitz, and
Thomas Reps. Debugging via run-time type checking.
In Processings of the International Conference on Fun-
damental Approaches to Software Engineering (FASE),
2001.

[31] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: Opti-
mized Mutation Scheduling for Fuzzers. In Proceedings
of the USENIX Security Symposium (SEC), 2019.

[32] Valentin Jean Marie Manès, HyungSeok Han, Choong-
woo Han, Sang Kil Cha, Manuel Egele, Edward J
Schwartz, and Maverick Woo. The art, science, and
engineering of fuzzing: A survey. IEEE Transactions
on Software Engineering, 2019.

[33] Barton P Miller, Louis Fredriksen, and Bryan So. An
empirical study of the reliability of UNIX utilities. Com-
munications of the ACM, 1990.

[34] Matt Miller. Trends, challenge, and shifts in soft-
ware vulnerability mitigation. https://github.
com/Microsoft/MSRC-Security-Research/blob/
master/presentations/2019_02_BlueHatIL/
2019_01%20-%20BlueHatIL%20-%20Trends%
2C%20challenge%2C%20and%20shifts%20in%
20software%20vulnerability%20mitigation.
pdf.

[35] NIST. Juliet test suite. https://samate.nist.gov/
SARD/testsuite.php.

[36] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
Fuzz: fuzzing by program transformation. In Proceed-
ings of the IEEE Symposium on Security and Privacy
(SP), 2018.

[37] Luís Pina, Daniel Grumberg, Anastasios Andronidis,
and Cristian Cadar. A DSL approach to reconcile equiv-
alent divergent program executions. In Proceedings of
the USENIX Annual Technical Conference (ATC), 2017.

[38] Luís Pina, Anastasios Andronidis, and Cristian Cadar.
FreeDA: Deploying Incompatible Stock Dynamic Anal-
yses in Production via Multi-Version Execution. In
Proceedings of the ACM International Conference on
Computing Frontiers (CF), 2018.

[39] The Chromium Project. Address Sanitizer
(ASan). https://www.chromium.org/developers/
testing/addresssanitizer.

[40] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In Proceed-
ings of the Network and Distributed System Security
Symposium (NDSS), 2017.

[41] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer:
A fast address sanity checker. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2012.

[42] Konstantin Serebryany and Timur Iskhodzhanov.
ThreadSanitizer: data race detection in practice. In
Proceedings of the workshop on binary instrumentation
and applications (WBIA), 2009.

[43] Kostya Serebryany. Hardware Memory
Tagging to make C/C++ memory safe(r).
https://github.com/google/sanitizers/
blob/master/hwaddress-sanitizer/
HardwareMemoryTaggingtomakeC_C+
+memorysafe(r)-iSecCon2018.pdf.

[44] Kostya Serebryany. Sanitize, Fuzz, and Harden Your
C++ Code. https://www.usenix.org/sites/
default/files/conference/protected-files/
enigma_slides_serebryany.pdf.

14

https://llvm.org/docs/LibFuzzer.html
http://llvm.org/
https://reviews.llvm.org/D32199
https://reviews.llvm.org/D32199
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://www.chromium.org/developers/testing/addresssanitizer
https://www.chromium.org/developers/testing/addresssanitizer
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf

[45] Julian Seward and Nicholas Nethercote. Using Valgrind
to Detect Undefined Value Errors with Bit-Precision. In
Proceedings of the USENIX Annual Technical Confer-
ence (ATC), 2005.

[46] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. Neuzz: Efficient
fuzzing with neural program smoothing. In Proceedings
of the IEEE Symposium on Security and Privacy (SP),
2019.

[47] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. SoK: sanitizing for security. In Proceedings
of the IEEE Symposium on Security and Privacy (SP),
2019.

[48] Evgeniy Stepanov and Konstantin Serebryany. Memo-
rySanitizer: fast detector of uninitialized memory use in
C++. In Proceedings of the Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), 2015.

[49] Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuf-
frida. Dangsan: Scalable use-after-free detection. In
Proceedings of the European Conference on Computer
Systems (EUROSYS), 2017.

[50] Dmitry Vyukov. Address/Thread/MemorySanitizer
Slaughtering C++ bugs. https://www.slideshare.
net/sermp/sanitizer-cppcon-russia.

[51] Dmitry Vyukov. Syzbot. https://syzkaller.
appspot.com/upstream.

[52] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In Proceedings of the IEEE Symposium
on Security and Privacy (SP), 2015.

[53] Wikipedia. x32 ABI. https://en.wikipedia.org/
wiki/X32_ABI.

[54] Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee.
Bunshin: Compositing Security Mechanisms through
Diversification. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2017.

[55] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Tae-
soo Kim. Designing New Operating Primitives to Im-
prove Fuzzing Performance. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2017.

[56] Yves Younan. FreeSentry: protecting against use-after-
free vulnerabilities due to dangling pointers. In Proceed-
ings of the Network and Distributed System Security
Symposium (NDSS), 2015.

[57] Michal Zalewski. American Fuzzy Lop. http://
lcamtuf.coredump.cx/afl.

[58] Michal Zalewski. New in AFL: persistent mode.
https://lcamtuf.blogspot.com/2015/06/

new-in-afl-persistent-mode.html.

15

https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://en.wikipedia.org/wiki/X32_ABI
https://en.wikipedia.org/wiki/X32_ABI
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html

	Introduction
	Background and Analysis
	Fuzzing overhead
	Address Sanitizer
	Overhead Analysis of Fuzzing with ASan

	FuZZan design
	FuZZan Metadata Structures
	Customized RB-Tree
	Min-shadow memory

	Dynamic metadata structure switching
	Sampling mode
	Metadata structure switching policies

	Implementation
	Evaluation
	Detection capability
	Efficiency of new metadata structures
	Efficiency of dynamic metadata structure
	Real-world fuzz testing
	Bug finding effectiveness
	FuZZan Flexibility

	Discussion
	Related Work
	Reducing Fuzzing Overhead
	Optimizing Sanitizers

	Conclusion

