
BenchIoT: A Security Benchmark for the Internet
of Things

Naif Saleh Almakhdhub∗§, Abraham A. Clements¶, Mathias Payer‖, Saurabh Bagchi∗
∗Purdue University, {nalmakhd, sbagchi}@purdue.edu

¶Purdue University and Sandia National Laboratories, aacleme@sandia.gov
‖EPFL, mathias.payer@nebelwelt.net

§King Saud University

Abstract—Attacks against IoT systems are increasing at an
alarming pace. Many IoT systems are and will be built using low-
cost micro-controllers (IoT-µCs). Different security mechanisms
have been proposed for IoT-µCs with different trade-offs. To
guarantee a realistic and practical evaluation, the constrained
resources of IoT-µCs require that defenses must be evaluated
with respect to not only security, but performance, memory, and
energy as well.

Evaluating security mechanisms for IoT-µCs is limited by the
lack of realistic benchmarks and evaluation frameworks. This
burdens researchers with the task of developing not only the
proposed defenses but applications on which to evaluate them.
As a result, security evaluation for IoT-µCs is limited and ad-
hoc. A sound benchmarking suite is essential to enable robust
and comparable evaluations of security techniques on IoT-µCs.

This paper introduces BenchIoT, a benchmark suite and
evaluation framework to address pressing challenges and limita-
tions for evaluating IoT-µCs security. The evaluation framework
enables automatic evaluation of 14 metrics covering security,
performance, memory usage, and energy consumption. The
BenchIoT benchmarks provide a curated set of five real-world
IoT applications that cover both IoT-µCs with and without an OS.
We demonstrate BenchIoT’s ability by evaluating three defense
mechanisms. All benchmarks and the evaluation framework is
open sourced and available to the research community 1.

I. INTRODUCTION

Experimental evaluation is integral to software systems
research. Benchmarks play a pivotal role by allowing standard-
ized and comparable evaluation of different software solutions.
Successful benchmarks are realistic models of applications in
that particular domain, easy to install and execute, and allow
for collection of replicable results. Regrettably, there is no
compelling benchmark suite in the realm of Internet of Things
(IoT) applications, specifically in those that run on low-end
platforms with either no operating system as a single binary
image or with a lightweight OS like ARM’s Mbed-OS [1]. As
IoT applications become more ubiquitous and are increasingly
used for safety-critical scenarios with access to personal user
data, security solutions will take center stage in this domain.
Therefore, IoT benchmarks will also be needed to evaluate the
strength of the security provided by the security solutions.

The IoT domain that we target has some unique charac-
teristics, which make it challenging to directly apply existing

1https://github.com/embedded-sec/BenchIoT

benchmarks either from the server world or even the embedded
world, to our target domain. These IoT systems run on low-
end micro-controllers (µCs), which have frequencies of the
order of tens to a few hundreds of MHz’s, e.g., ARM’s 32-
bit Cortex-M series. They have limited memory and storage
resources, of the order of hundreds of KBs and a few MBs
respectively. These applications typically have tight coupling
with sensors and actuators that may be of diverse kinds, but
using standard interfaces such as UART and SPI. Finally, the
applications have the capability for networking using one or
more of various protocols. In terms of the software stack that
runs on these devices, it is either a single binary image that
provides no separation between application and system level
(and thus is a “bare-metal” or no OS system) or has a light-
weight real time OS (e.g., ARM’s Mbed-OS), which supports
a thin application-level API. We refer to our target domain for
the remainder of the paper as IoT-µCs.

Existing benchmarks from the server world are not applica-
ble because they do not reflect applications with characteristics
mentioned above and frequently rely on functionality not
present on IoT-µCs. For example, SPEC CPU2006 [2] targets
desktop systems and requires e.g., standardized I/O. Many
IoT applications on the other hand have non-standard ways of
interacting with IO devices such as through memory-mapped
IO. In addition, their memory usage is in the range of hundreds
of MBs [3]. Several benchmarks [4]–[7] are designed specif-
ically for comparing performance on µCs. However, they do
not exercise the network connectivity and do not interact with
the physical environment in which the devices may be situated
(i.e., they do not use peripherals). Moreover, these benchmarks
lack the complexity and code size of realistic applications
and as result make limited use of relatively complex coding
constructs (e.g., call back event registration and triggering).
From a security perspective, control-flow hijacking exploits
rely on corrupting code pointers, yet these benchmarks make
limited use of code pointers or even complex pointer-based
memory modification. Thus, they do not realistically capture
the security concerns associated with IoT-µCs.

The lack of security benchmarks for IoT applications in-
hibits disciplined evaluation of proposed defenses and burdens
researchers with the daunting task of developing their own
evaluation experiments. This has resulted in ad-hoc evaluations

TABLE I
A SUMMARY OF DEFENSES FOR IOT-µCS WITH THE EVALUATION TYPE.

Defenses Evaluation Type
Benchmark Case Study

TyTan [8] X
TrustLite [9] X
C-FLAT [10] X
nesCheck [11] X
SCFP [12] Dhrystone [7] X
LiteHAX [13] CoreMark [6] X
CFI CaRE [14] Dhrystone [7] X
ACES [15] X
Minion [16] X
EPOXY [17] BEEBS [4] X

and renders comparison between different defenses infeasible
as each defense is evaluated according to different benchmarks
and metrics. Table I compares the evaluations of several recent
security mechanisms for IoT-µCs, and only two of them use
the same benchmarks to evaluate their defenses, and even these
two target different architectures, making a comparison hard.
Out of all the defenses, only four used any benchmarks at all
and they were from the embedded world and not representative
of IoT applications as identified above. The other solutions
relied solely on micro-benchmarks and case studies. These
are unique to the individual papers and often exercise only a
single aspect of a realistic application (e.g., writing to a file).
Requirements for IoT benchmarks.
Benchmarks for IoT-µCs must meet several criteria. First, the
applications must be realistic and mimic the application char-
acteristics discussed above. While an individual benchmark
need not satisfy all characteristics, the set of benchmarks in a
suite must cover all characteristics. This ensures security and
performance concerns with real applications are also present
in the benchmarks. IoT devices are diverse, therefore the
benchmarks should also be diverse and cover a range of
factors, such as types of peripherals used, and being built
with or without an OS. Finally, network interactions must be
included in the benchmarks.

Second, benchmarks must facilitate repeatable measure-
ments. For IoT applications, the incorporation of peripherals,
dependence on physical environment, and external communi-
cation make this a challenging criterion to meet. For example,
if an application waits for a sensed value to exceed a threshold
before sending a communication, the time for one cycle of the
application will be highly variable. The IoT-µCs benchmarks
must be designed to both allow external interactions while
enabling repeatable measurements.

A third criterion is the measurement of a variety of met-
rics relevant to IoT applications. These include performance
metrics (e.g., total runtime cycles), resource usage metrics
(e.g., memory and energy consumption), and domain-specific
metrics (e.g., fraction of the cycle time the device spends in
low-power sleep mode). An important goal of our effort is to
enable benchmarking of IoT security solutions and hence the
benchmarks must enable measurement of security properties
of interest. There are of course several security metrics very
specific to the defense mechanism but many measures of
general interest can also be identified, such as the fraction

Run benchmarks on
the targeted hardware

Statically analyze the
benchmark binary

Collect
static metrics

Collect
dynamic metrics

Metric collector
 runtime library

User
configuration

 files

Compile
&

Link

Benchmark
binary

BenchIoT Benchmarks

Results file

Evaluation Framework

1

2 3

4 5

Fig. 1. An overview of the evaluation workflow in BenchIoT.

of execution cycles with elevated privilege (“root mode”) and
number of Return-Oriented Programming (ROP) gadgets.
Our Contribution: BenchIoT
This paper introduces the BenchIoT benchmark suite and
evaluation framework that fulfills all the above criteria for
evaluating IoT-µCs. Our benchmark suite is comprised of five
realistic benchmarks, which stress one or more of the three
fundamental task characteristics of IoT applications: sense,
process, and actuate. They also have the characteristics of
IoT applications introduced above. The BenchIoT benchmarks
enable deterministic execution of external events and utilize
network send and receive. BenchIoT targets 32-bit IoT-µCs
implemented using the popular ARMv7-M architecture. Each
BenchIoT benchmark is developed in C/C++ and compiles
both for bare-metal IoT-µCs, and for ARM Mbed-OS. Our
use of the Mbed API (which is orthogonal to the Mbed-OS)
enables realistic development of the benchmarks since it comes
with important features for IoT-µCs such a file system.

BenchIoT enables repeatable experiments while including
sensor and actuator interactions. It uses a software-based
approach to trigger such events. The software-based approach
enables precise control of when and how the event is delivered
to the rest of the software without relying on physical environ-
ment. This approach has been used previously for achieving
repeatability as a means to automated debugging [18], [19].

BenchIoT’s evaluation framework enables automatic collec-
tion of 14 metrics for security, performance, memory usage,
and energy consumption. The evaluation framework is a
combination of a runtime library and automated scripts. It is
extensible to include additional metrics to fit the use of the
developer and can be ported to other applications that use the
ARMv7-M architecture. An overview of BenchIoT and the
evaluation framework is shown in Figure 1. The workflow of
running any benchmark in BenchIoT is as follows: (1) The user
compiles and statically links the benchmark with a runtime
library, which we refer to as the metric collector library, to
enable collecting the dynamic metrics ¶; (2) The user provides
the desired configurations for the evaluation (e.g., number of
repetitions) ·; (3) To begin the evaluation, the user starts the
script that automates the process of running the benchmarks to

2

BenchIoT Benchmark

Mbed RTOS

MbedPortable API and covers peripherals

HAL Library
(Hardware Abstraction Layer)

Board dependent (API not portable)

Microcontroller Hardware

Fig. 2. Illustration of software layers used in developing BenchIoT bench-
marks. BenchIoT provides portable benchmarks by relying on the Mbed
platform.

collect both the dynamic ¸ and static ¹ metrics; (4) Finally,
the benchmark script produces a result file for each benchmark
with all its measurements º.

To summarize, this paper makes the following contributions:
(1) This is the first realistic benchmark suite for security and
performance evaluation of IoT-µCs. It enables the evaluation
of IoT-µCs with realistic benchmarks representing charac-
teristics of IoT applications such as connectivity and rich
interactions with peripherals; (2) It enables out-of-the-box
measurements of metrics for security, performance, memory
usage, and energy consumption; (3) It provides a deterministic
method to simulate external events enabling reproducible mea-
surements; (4) It demonstrates the effectiveness of BenchIoT
in evaluating and comparing security solutions where we
apply three standard IoT security defenses to the benchmarks
and perform the evaluation. Our evaluation brings out some
hitherto unreported effects, such as, even though defense
mechanisms can have similarly modest runtime overhead, they
can have significantly different effects on energy consumption
for IoT-µCs depending on their effect on sleep cycles. The
benchmark suite along with the evaluation scripts is open
sourced and available to the research community [20].

II. SCOPING AND BACKGROUND

A. Scoping and Target Systems

The goal of this work is to enable security evaluation
and comparison for different security defenses on IoT-µCs
devices through: (1) comprehensive, automatically measured
metrics and (2) benchmark suite representing realistic IoT
applications. It is not the goal of this work to propose new
security mechanisms. However, we believe that our benchmark
suite will be vital for continued innovation and reproducibility
of security research on IoT-µCs.

We define an IoT-µC device as an embedded system that
executes software on a microcontroller (µC), and has network
connectivity. That is, the notion of device includes the µC and
the standard peripherals packaged on the same board. As such,
all of BenchIoT’s benchmarks utilize IP communication. µCs
have clock speeds of a few MHz topping out under 200MHz,
unlike higher-end embedded systems (e.g., ARM Tegra 2)
which operate at clock speeds in the range of GHz. Our target
systems have a few hundreds KBs of RAM and few MBs
of Flash. These constraints mean they have limited software

executing on them. It is common practice to have these devices
run a single application in a dedicated mode and therefore
all our benchmarks also provide a single functionality. They
operate either with a light-weight Real Time Operating System
(RTOS), enabling multiple threads of execution, or a single
threaded application without an OS (i.e., bare-metal). In both
cases, a single statically linked binary is the only code that
executes on the system.

The µCs typically lack security hardware commonly avail-
able on server-class systems (e.g., MMUs). However, they
commonly have a Memory Protection Unit (MPU) [21]. A
MPU enforces read, write, and execute permission on physical
memory locations but does not support virtual memory. The
number of regions an MPU supports is typically quite small
(8 in the ARM v7-M architectures). MPUs in general support
two privilege levels (i.e., privileged and unprivileged). These
differences in capabilities and software development make
many security mechanisms for desktop systems inapplicable
for IoT-µCs (e.g., ASLR). ASLR relies on virtual memory to
randomize the layout of the application.

To implement the benchmarks and demonstrate rich and
complex IoT-µCs applications, BenchIoT targets 32-bit IoT-
µCs using the ARM Cortex-M(3,4,7) µCs, which are based on
the ARMv7-M architecture [22]. ARM Cortex-M is the most
popular µC for 32-bit µCs with over 70% market share [23],
[24]. This enables the benchmarks to be directly applicable to
many IoT devices being built today. As shown in Figure 2,
hardware vendors use different HAL APIs depending on the
underlying board. Since ARM supplies an ARM Mbed API
for the various hardware boards, we rely on that for portability
of BenchIoT to all ARMv7-M boards. In addition, for applica-
tions requiring an OS, we couple those with Mbed’s integrated
RTOS—which is referred to as Mbed-OS. Mbed-OS allows
additional functionality such as scheduling, and network stack
management. To target other µCs, we will have to find a
corresponding common layer or build one ourselves—the latter
is a significant engineering task and open research challenge
due to the underlying differences between architectures.

B. Background

Cortex Microcontroller Software Interface Standard: The
Cortex Microcontroller Software Interface Standard [25] (CM-
SIS) is a standard API in C provided by ARM to access
the Cortex-M registers and low level instructions. CMSIS is
portable across Cortex-M processors and is the recommended
interface by ARM. Note that unlike Mbed, CMSIS does not
cover peripherals (e.g., UART). Mbed however uses CMSIS
to access Cortex-M registers.

Privilege modes: ARMv7-M supports two privilege levels:
(1) privileged mode, where all memory regions are accessible
and executable. Exception handlers (e.g., interrupts, system
calls) always execute in privileged mode. (2) user mode, where
only unprivileged regions are accessible depending on the
MPU access control configuration. To execute in privileged
mode, unprivileged code can either execute Supervisor call

3

Security
Total

privileged cycles

Privileged
thread cycles

SVC cycles

Max. code
region ratio

Max. data
region ratio

DEP

of ROP gadgets

of indirect calls

 Performance

Total
runtime cycles

Sleep cycles

 Memory
&

Energy

Total
RAM usage

Energy
consumption

Total
Flash usage

Stack + Heap
usage

: Static

: Dynamic

Fig. 3. A summary of the BenchIoT metrics.

(SVC), a system call in ARMv7-M, or be given elevated
privileges through the system’s software.

Software Trigger Interrupt Register: The STIR register
provides a mechanism to trigger external interrupts through
software. An interrupt is triggered by writing the interrupt
number to the first nine bits of STIR. BenchIoT utilizes the
STIR register to ensure reproducibility of experiments and
avoid time variations of external interrupts arrival.

Data Watchpoint and Trace Unit: ARM provides the Data
Watchpoint and Trace (DWT) unit [22] for processor and
system profiling. It has a 32-bit cycle counter that operates
at the system clock speed. Thus, BenchIoT uses it for making
runtime measurements in the system.

III. BENCHMARK METRICS

The goal of the BenchIoT metrics is to enable quantifiable
evaluation of the security and practicality of proposed defenses
for IoT-µCs. While security defenses are diverse and use
various metrics to evaluate their effectiveness, the metrics
proposed by BenchIoT are chosen based on the following
criteria: (1) enable evaluating established security principles
for IoT-µCs (e.g., principle of least privilege); (2) enable
evaluating performance effects of defenses on IoT-µCs.

BenchIoT provides 14 metrics spanning four categories,
namely: (1) Security; (2) Performance; (3) Memory; (4) En-
ergy. Figure 3 shows a summary of the metrics. We note that
metrics cannot cover all attack and security aspects. BenchIoT
is designed to provide a generalized framework for researchers.
Thus, we avoid metrics specific to a security technique.

A. Security Metrics

Total privileged cycles: An important challenge in securing
IoT-µCs is reducing the number of privileged cycles. Privi-
leged execution occurs during (1) Exception handlers and (2)
User threads with elevated privileges. By default, applications
on IoT-µCs execute completely in privileged mode. We mea-
sure the total number of execution cycles in privileged mode.
A lower number is better for the security of the system.

Privileged thread cycles: Though measuring total privi-
leged cycles can help assess the security risks of the system,

they include exception handlers that are asynchronous and may
not always be executable directly by a malicious adversary.
However, a malicious user can exploit privileged thread cycles
as these occur during the normal execution of the user code.
Thus, this metric is a direct quantification of security risks for
normal application code.

SVC cycles: We single out SVC cycles (i.e., system call
cycles) from other exception handlers as these are synchronous
and can be called by unprivileged threads to execute privileged
code, therefore is a possible attack surface.

Maximum code region ratio: Control-flow hijacking like
code reuse attacks depend on the available code to an attacker
to reuse. Memory isolation limits an attacker’s capabilities by
isolating segments of code within the application. This metric
aims to measure the effectiveness of memory isolation by
computing the size ratio of the maximum available code region
to an attacker with respect to the total code size of application
binary. A lower value is better for security.

Maximum global data region ratio: Another attack vector
are data-only attacks [26], [27]. Such attacks target sensitive
data of the application rather than hijacking the control-
flow. These sensitive data can be security critical and lead
to command injection or privilege escalation (e.g., by setting
a boolean is_admin to true). This metric aims to measure
the effectiveness of data isolation by computing the size ratio
of the maximum available global data region to an attacker
with respect to the total data section size of the application
binary. A lower value is again better for security.

Data Execution Prevention: DEP is a well-known defense
mechanism to stop code injection attacks by making memory
regions either writable (data) or executable (code), but not
both. Unfortunately, DEP is not commonly deployed in IoT-
µCs [16], [17]. As a result, DEP has been added to the
BenchIoT evaluation framework to raise awareness of such
an important defense for IoT-µCs developers. This metric
requires using the BenchIoT API when changing the MPU
configuration to validate DEP is always enforced (i.e., every
MPU region always enforces W ⊕ X).

Number of available ROP gadgets: Return Oriented Pro-
gramming (ROP) [28] is a type of code reuse attack used
to hijack the control-flow of the application. It is performed
by exploiting a memory corruption vulnerability to chain
existing code snippets–that end with a return instruction (i.e.,
ROP gadgets)–together to perform arbitrary execution. Hence,
reducing the number of possible ROP gadgets reduces the
attack surface available to the attacker, and helps quantify the
effectiveness of defense mechanisms such as randomization
or CFI. The number of ROP gadgets is measured using the
ROPgadget compiler [29] on the benchmark binary.

Number of indirect calls: Control-flow hijacking occurs
through corrupting indirect control-flow transfers. ROP re-
siliency covers control-flow hijacking of backward edges (i.e.,
function returns). Another attack scenario is using indirect
calls (i.e., forward edges). Thus, reducing the number of indi-
rect calls (e.g., function pointers) or protecting them through
control-flow hijacking defenses like Control-Flow Integrity

4

(CFI) [30] is a desired security property. We measure the
number of indirect calls by parsing the benchmark binary.

B. Performance Metrics

Total runtime cycles: This metric measures the total run-
time of a benchmark from establishing a remote connection
to the end. Including execution cycles prior to establishing a
connection results in variance in measuring the benchmarks
(e.g., wait for client) and thus they are excluded. While
many IoT-µCs run forever, defining a start and an end to a
benchmark is important to enable analyzing the impact of
security mechanisms on the overall performance.

Sleep cycles: Popular embedded OSes [1], [31] use a sleep
manager that automates entering sleep mode to minimize
energy consumption of IoT-µCs. For example, the application
can enter sleep mode while blocking on network receive or
writing a file to uSD card. Since energy consumption during
sleep mode is typically two to three orders of magnitude lower
compared to active or idle mode [32], many IoT applications
spend a large portion of their execution in sleep mode. A
security technique can reduce sleep cycles and this is important
to capture to measure the effects on energy conservation.

C. Memory and Energy Metrics

Total Flash usage: Measures the application code and read-
only data.

Stack and heap usage: This metric enables analyzing the
overhead of memory used at runtime. The obtained measure-
ment is the maximum usage of the stack and the heap.

Total RAM usage: In addition to the stack and heap usage,
this metric measures the statically allocated data sections by
parsing the benchmark binary image.

Total energy consumption: This metric is measured phys-
ically (e.g., with a logic analyzer) and is the only metric
in BenchIoT that depends on external hardware. The user
connects a current sensor to the micro-controller power supply
in series to measure the power. The energy is calculated by
multiplying the average power with total runtime. A General
Purpose Input Output (GPIO) signal is instrumented to signal
the beginning and the end of the measurement.

IV. BENCHMARK DESIGN

To develop a realistic benchmarking suite for IoT-µCs, we
designed BenchIoT to satisfy the following criteria: (1) En-
ables deterministic execution of external events; (2) Performs
different types of tasks to increase coverage of application
behaviors and domains; (3) Utilizes various peripherals; (4)
Maximizes portability and reproducibility across hardware
vendors; (5) Minimizes the effect of surrounding environment
on network connectivity. In the next sections, we provide the
explanation and need for each dimension.

A. Deterministic Execution Of External Events

Including external events (e.g., user pushing a button) is
necessary to represent realistic IoT-µCs applications. How-
ever, these external events lead to a wide variance across

benchmarks, thus rendering the evaluation non-repeatable. An
important aspect in the design of BenchIoT is that it allows
deterministic execution of external events. We define external
events as any interrupt caused by an action not performed by
the underlying device. For example, sending a pin code for
a smart locker application from a nearby PC is considered
an external event. Note that this mechanism does not cover
network functionality (e.g., send, recv) since these must
demonstrate actual connection with a remote client to represent
an IoT application.

External events execute as interrupt requests, thus, Ben-
chIoT leverages the STIR register to trigger the interrupt at
specific points in the benchmark. The Interrupt Request (IRQ)
is triggered by writing the IRQ number to the STIR register
at specific points of the benchmark. Thus, instead of having a
variance in the waiting time to enter a pin code, the interrupt
is triggered at a specific point, enabling reproducibility.

Triggering the interrupt in software allows the BenchIoT
benchmarks to control the IRQ execution and the input dataset.
The device may execute the IRQ on the hardware and after
finishing, the benchmark overwrites the provided value with
the read value from the dataset that is being used to drive the
experiment. For example, developers may use different tem-
perature sensors in different settings. After the triggered IRQ
executes, BenchIoT replaces the measured value with the read
temperature to make the benchmark execution independent of
the physical environment.

B. Application Characteristics

To increase the coverage of IoT-µCs application domains,
the BenchIoT benchmarks were designed to have character-
istics typical of IoT applications. The characteristics can be
categorized into three classes: (1) Sensing: the device actively
records sensory data from one or more on-board sensors; (2)
Processing: the device performs some computation or analysis
(e.g., authentication); (3) Actuation: the device performs some
action based on sensed data and local processing or remote
processing. A benchmark may perform one or more of these
task types.

The attack surface is influenced by the type of the task. For
example, applications with sensing tasks (e.g., smart meter)
often sample physical data, and thus their communication
might be limited since they act as sensor nodes to a more
powerful server that aggregates and analyzes their data. How-
ever, data tampering becomes a prominent attack vector in
such applications. An example of such an attack is tampering
smart meter data to reduce electricity bills [33]. An attack
on an application with actuation can impose a cyber-physical
hazard. For example, an attack hijacking the control-flow of
an industrial robot poses physical risks to humans [34].

C. Peripherals

The BenchIoT benchmarks are designed to include various
peripherals to represent realistic interactions of IoT-µCs. In
addition, peripherals can increase the attack surface for an
application [35], [36], and thus their security evaluations

5

differ. For example, attacks against autonomous vehicles target
vulnerabilities in the Controller Area Network (CAN) bus [37].
The runtime performance is also effected by these peripherals.
For example, a µSD that uses the Secure Digital Input Output
(SDIO) results in faster data transfer than the Synchronous
Peripheral Interface (SPI) since SDIO utilizes more data lines.

While BenchIoT is designed to stress as many peripherals as
possible, we focus on the most commonly available peripherals
across different hardware targets to allow portability. These
are; UART/USART, SPI, Ethernet, timers, GPIO, Analog-to-
Digital Converter (ADC), Real-time Clock (RTC), and Flash
in-application programming (IAP). In addition, in case a non-
common peripheral is used in a benchmark (e.g., Display
Serial Interface (DSI)) and such peripheral is not present on
the developer targeted board, BenchIoT allows the developer
to configure and still run the main benchmark while excluding
the missing peripheral.

D. Portability

BenchIoT aims to enable security evaluation for IoT-µCs
across a wide set of hardware platforms. Since IoT-µCs cover
both systems with and without an OS, we develop BenchIoT to
support both. Therefore, the BenchIoT benchmarks were de-
veloped in C/C++ using the popular Mbed platform [1], [38].
Unlike other RTOSs [39], Mbed is integrated with essential
features for the IoT “things” (e.g., networking, cryptographic
library) and allows developing benchmarks for systems with
an RTOS as well as bare-metal systems. As shown earlier
in Figure 2, Mbed provides an abstraction layer above each
vendor’s HAL library, thus allowing benchmarks to be portable
across the various ARMv7-M targets supported by Mbed.

E. Network Connectivity

In keeping with the fundamental characteristic of IoT
applications that they perform network communication, we
design our benchmarks to do network send and receive.
However, wireless communication can introduce significant
non-determinism in the execution of a benchmark. Therefore,
BenchIoT uses Ethernet as its communication interface since
it maintains the application’s IoT-relevant characteristic to re-
main unchanged, while minimizing noise in the measurements.

V. BENCHMARK APPLICATIONS

In this section we describe the BenchIoT benchmarks and
highlight the notable features of IoT applications that each
demonstrates. Table II shows the list of BenchIoT benchmarks
with the task type and peripherals it is intended to stress. While
the bare-metal benchmarks perform the same functionality,
their internal implementation is different as they lack OS
features and use a different TCP/IP stack. For the bare-metal
applications, the TCP/IP stack operates in polling mode and
uses a different code base. As a result the runtime of bare-
metal and OS benchmarks are different.

Smart Light: This benchmark implements a smart light
that is controlled remotely by the user. The user can also
send commands to automate the process of switching the

TABLE II
A SUMMARY OF BENCHIOT BENCHMARKS AND THEIR CATEGORIZATION

WITH RESPECT TO TASK TYPE, AND PERIPHERALS.

Benchmark
Task Type

PeripheralsSense Process Actuate

Smart Light X X X Low-power timer, GPIO, Real-time clock
Smart Thermostat X X X Analog-to-Digital Converter (ADC), GPIO, µSD card
Smart Locker X X Serial(UART/USART), Display, µSD card, Real-time clock
Firmware Updater X X Flash in-application programming
Connected Display X X Display,µSD card

light on and off to conserve energy. Moreover, the smart
light periodically checks if a motion was detected, and if no
motion is detected it turns the light off to conserve energy.
Conversely, it will turn on once a motion is detected. From
a performance prescriptive, the benchmark demonstrates an
event-driven application that will spend large portion of cycles
in sleep mode, wake up for short periods to perform a set of
tasks. It is important to measure the energy overhead, which
may happen due to reduction of the sleep cycle duration. From
a security perspective, attacks on smart light can spread to
other smart lights and cause widespread blackout [40].

Smart Thermostat: The smart thermostat enables the user
to remotely control the temperature and inquire about the
current temperature of the room. In addition, the device
changes temperature when the desired temperature is requested
through a UART peripheral, with the display showing the
responses from the application. Temperature monitoring is a
common part of industrial applications (e.g., industrial motors
monitoring [41], [42]). Attacks on a smart thermostat can
target corrupting sensitive data (e.g., temperature value), thus
leading to physical risks (e.g., overheating motor) or can use
the compromised device as a part of botnet [43].

Smart Locker: This benchmark implements a smart mail
locker, such as for large residential buildings. The benchmark
demonstrates delivering and picking up the mail from various
lockers. Upon delivering a package to one of the lockers, a
random pin is generated and is sent to the server to notify
the user. The device only saves the hash of the random pin
to compare it upon picking up a package. Moreover, the
benchmark maintains a log file of actions (i.e., pickup/drop
package). The server also sends commands to inquire if the
smart locker contain a certain package. The user uses the serial
port to enter the input (e.g., random pin), and the application
uses a display (if present) to communicate with the user. In
addition, the benchmark uses a cryptographic library and stores
sensitive data (e.g., hashes of generated pins). This is an event-
driven benchmark.

Firmware Updater: This benchmark demonstrates a re-
mote firmware update. On power up, the firmware updater
starts a receiver process. It receives the firmware size followed
by the firmware, after writing the firmware to flash it is
executed. Practical security mechanisms need to be compatible
with firmware updates, as vulnerabilities targeting firmware
updates have been a target of attacks [44].

Connected Display: The connected display receives a set
of compressed images from a remote server. It decompresses
the images and shows them on the display. It also saves
each image to file. The large code present in such application

6

(e.g., networking library, image compression library) makes
measuring the maximum code region ratio and ROP resiliency
more relevant.

VI. EVALUATION FRAMEWORK

The goal of the evaluation framework is: (1) to enable
measuring the metrics explained in Section III; (2) to automate
the evaluation process of the BenchIoT benchmarks.

Automating the evaluation of IoT-µCs is important since
evaluating IoT-µCs is often a tedious task as it relies on
manual measurements. Another option is the use a commercial
hardware debugger. To avoid the limitations of both options,
the BenchIoT framework follows a software based approach
to collect its metrics. That is, BenchIoT does not require
any extra hardware to collect its metrics (except for the
energy measurement). This is achieved by only relying on the
ARMv7-M architecture.

The BenchIoT evaluation framework consists of three parts:
(1) a collection of Python scripts to automate running and
evaluating the benchmarks; (2) a collection of Python scripts
to measure the static metrics; (3) a runtime library—which we
refer to hereafter as the metric collector library—written in
C, that is statically linked to every benchmark to measure the
dynamic metrics.

A. Static Metrics Measurements

We collect the static metrics explained in Figure 3 by
parsing the binary image of each benchmark. To collect static
RAM usage and Flash usage we use the size utility and the
results are measured according to the address space and name
of the region.

Unlike the previous static metrics, security static metrics
require different tools. First, for the number of ROP gadgets
we use the ROP gadget compiler [29]. For the second static se-
curity metric, the number of indirect calls, we parse the output
of objdump and count the static number of indirect branch
instructions (i.e., BX and BLX). However, in the ARMv7-M
architecture the same instruction can be used for a return
instruction (i.e., backward edges) by storing the return address
in the link register (LR). Thus, to measure the indirect calls
(i.e., forward edges) we count branch instructions that use a
register other than the link register.

B. Metric Collector Runtime Library

The goal of the metric collector library is to allow trans-
parent and automatic measurement of dynamic metrics to the
user. That is, it should not limit the resources available to
the user (e.g., using a timer) or limit the functionality of
the system. The metric collector uses the DWT unit cycle
counter to measure the execution cycles for dynamic metric
in Figure 3, such as the total privileged cycles or the sleep
cycles. The DWT cycle counter provides precise measurement
since it runs at the system clock speed. The metric collector
library uses a global data structure that contains a dedicated
variable for each of its collected metrics. Each variable is
updated by reading the DWT cycle counter.

In order to provide transparent evaluation for the devel-
oper, the static library remaps some of the CMSIS library
functionality to the BenchIoT library. The remapped CMSIS
functions are instrumented to collect the metrics automatically
at runtime. As an example, since the WFI instruction puts
the processor to sleep till it is woken up by an interrupt,
the remapped function intercepts the WFI call to track sleep
cycles. A user can call the CMSIS functions normally, and the
metric collector library will transparently collect the metrics.
Another option for such instrumentation is to use a binary re-
writer [45]. However, such a method relies on commercial non-
open source software (i.e., IDA-Pro) and is thus not compatible
with the goals of BenchIoT.

The second goal for the metric collector library is to
automatically measure dynamic metrics such as the total
privileged cycles. To achieve this, the metric collector auto-
matically tracks: (1) privileged thread cycles; (2) all cycles
of exception handlers. Measuring privileged thread cycles is
done by instrumenting the __set_CONTROL() CMSIS call
to track changes between privileged and unprivileged user
modes. Measuring execution cycles of exception handlers
poses several challenges.

First, while some exception handlers like SVC (i.e., system
calls) can be measured by manual instrumentation to the SVC
handler, other exception handlers like interrupt requests vary
in the number of handler present and API used depending
on the underlying hardware. Hence, they cannot be manually
instrumented. Second, the hardware handles exception entry
and exit, and there is no software path that can be instru-
mented. When an exception occurs, the hardware looks up
the exception handler from the vector table, pushes the saved
stack frame, and redirects execution to the exception handler.
When the exception finishes, the hardware handles returning
using the saved stack frame and special values stored in the
link register LR.

To overcome these limitations, the metric collector library
controls the vector table in order to track exception handlers.
As shown in Figure 4, before the main application the metric
collector library switches the vector table to point to the
one controlled by itself. With this setup, when an exception
occurs (e.g., Exception_Handler100), the hardware will
redirect the execution to the BenchIoTTrampoline func-
tion ¶. To remember the special value for exception exit,
BenchIoTTrampoline saves the value of LR. Next, it
resolves the actual handler by reading the Interrupt Control and
State Register (ICSR). It initiates the measurement and redi-
rects the execution to the original handler ·, which invokes
Exception_Handler100 ¸. After the original handler has
finished, execution returns to BenchIoTTrampoline ¹,
which ends the measurement and returns normally by using the
saved LR value. The dynamic metrics measured by the metric
collector are sent at the end of the benchmark through a UART
to the user’s machine. These are received automatically by the
evaluation framework and stored to a file.

7

V
ector Table

BenchIoT Trampoline

BenchIoT Trampoline

...

...

BenchIoT Trampoline

O
ld V

ector Table

Exception Handler 0

Exception Handler 100

...

...

Exception Handler N

1 void BenchIoTTrampoline(void){
2 save_exception_return();
3 lookup_original_exception();
4 start_measurement();
5 exec_original_exception();
6 end_measurement();
7 restore_exception_return();
8 }

1 void Exception_Handler100(void){
2 /* Execute handler*/
3 }

1 2

3

4

Fig. 4. Exception handlers tracking with BenchIoT.

VII. EVALUATION

To demonstrate how the metrics described in Section III
enable evaluation of proposed security defenses, we evaluated
the BenchIoT benchmarks with three defense mechanisms. We
also compare the complexity of our benchmarks to that of
existing embedded benchmarks.

A. Defense Mechanisms

The first defense is ARM’s Mbed-µVisor [46]. The µVisor
is a hypervisor that enforces the principle of least privilege
by running all application code in non-privileged mode. Only
µVisor’s code and parts of the OS run in privileged mode.

The second is a remote attestation mechanism drawn from
well established attestation defenses [10], [47]–[49], and is
purposed to authenticate the integrity of the code residing on
the device. The remote attestation mechanism uses a real-time
task that runs every 25ms in a separate thread to read the
code in blocks, hash it, then send the hashed block to the
server to verify the code integrity. At initialization, the remote
attestation configures the MPU to save the code for reading
and hashing the application in a special region in flash that is
only accessible in privileged mode.

The final defense mechanism is a data integrity mechanism
we draw from [16], [46], [50], [51] that provides data in-
tegrity through memory isolation. Our implementation moves
sensitive data from RAM to a SECURE_DATA_REGION in
Core Coupled RAM (CCRAM) at compile time. CCRAM
is an optional memory bank that is isolated from RAM. It
provides faster access to its data than RAM but has smaller
size. The secure data region is accessible in privileged mode
only. It is enabled before accessing the sensitive data and
is disabled afterwards. The sensitive data depends on the
underlying benchmark (e.g., Flash IAP in firmware updater).
It is important to note that the goal of our security evaluation
is to demonstrate how BenchIoT metrics can help evaluate
existing defense mechanisms with respect to security benefits
and performance overhead. It is not to propose new security
mechanisms. The BenchIoT benchmarks are built with the
standard configuration of IoT-µCs and popular OSes to reflect
real security challenges of current systems. For example, the
baseline is evaluated using the default configuration of Mbed-
OS, which means the MPU is not enabled and DEP is not
supported.

We evaluated both the baseline and defense mechanisms on
the STM32F479I-Eval [52] board. Measurements were aver-

aged over five runs for each benchmark. Note that since Mbed-
µVisor and remote attestation require an OS (i.e., remote
attestation requires a separate thread), it was only evaluated
for the OS benchmarks.

B. Performance and Resource Usage Evaluation

Figure 5 shows the performance evaluation. For the OS
benchmarks, the total runtime shows a modest runtime over-
head for all mechanisms. The highest overhead occurs for
remote attestation at 2.1% for firmware updater. Thus, from
the viewpoint of runtime overhead, all the security mech-
anisms appear feasible for all the benchmarks running on
IoT platforms. However, the story is more nuanced when we
look at the effect of the security mechanisms on sleep cycles.
The µVisor has no sleep cycles, which has an adverse effect
on energy consumption. The µVisor disables sleep because
of incompatibility issues [53] since implementation of sleep
function differs depending to the underlying hardware (i.e.,
HAL library). Some HAL implementations break the privilege
separation enforced by the µVisor, and as a result the µVisor
goes into idle loop instead of entering sleep mode. The remote
attestation mechanism decreases sleep cycles since it runs in a
separate thread with a real-time task every 25ms, thus, the OS
will run the remote attestation mechanism instead of entering
sleep mode. On the other hand, the data integrity mechanism
shows negligible change for sleep cycles.

Note that the reduction in runtime overhead for the con-
nected display benchmark with µVisor occurs because the
benchmark was configured to exclude the display. Porting the
display functionality to the µVisor is a manual effort and is
orthogonal to our goals of evaluating the security character-
istics of the µVisor. Thus, to limit our efforts we utilize the
option available by BenchIoT to run a benchmark without the
Display Serial Interface (DSI) as mentioned in Section IV-C.

For the bare-metal benchmarks, the data integrity mecha-
nism shows similar overhead for the total runtime cycles as
its OS counterpart. Moreover, in all bare-metal benchmarks,
there is no sleep cycles because it is lacking the sleep manager
provided by the Mbed-OS.

In order to collect the metrics in Figure 5 and all other
dynamic results, the evaluation framework used the metric
collector runtime library. As shown in Figure 5(c), the metric
collector library has a low average overhead of 1.2%.

Figure 6 shows a comparison of the memory usage over-
head. The µVisor and remote attestation mechanisms show
an increase in memory usage overall. The remote attestation
shows a large increase heap and stack usage (over 200%) since
it requires an additional thread with a real-time task. However,
it shows less than 30% increase in RAM since the larger
portion of of RAM usage is due to the global data and bss
regions. The µVisor requires additional global data and thus
show a larger increase in RAM. Both require additional code
and thus increase Flash usage. The data integrity mechanism
for both the OS and bare-metal benchmarks change some
local variables to globals and moves them to CCRAM. Thus,
they show negligible effect on memory overall. Notice that

8

80 60 40 20 0 20

(a) Runtime cycles (%)

Firmware
updater

Connected
display

Smart
light

Smart
locker

Smart
thermostat

0.4B

3.2B

12.1B

2.8B

0.4B

0.4B

12.6B

12.1B

2.8B

0.4B

0.4B

12.6B

12.1B

2.7B

0.4B

1.9B

13.0B

12.7B

3.8B

0.8B
Mbed-uVisor
RA (OS)
DI (OS)
DI (BM)

10
0 80 60 40 20 0 20 40

(b) Sleep Cycles (%)

0.0M

0.0M

0.0M

0.0M

0.0M

0.0M

234.1M

11517.9M

47.1M

50.0M

1.3M

244.5M

11851.3M

48.4M

50.6M

0.0M

0.0M

0.0M

0.0M

0.0M

0 1 2 3 4 5
(c) Measurement
 Overhead (%)

Fig. 5. Summary of BenchIoT performance metrics for µVisor, Remote
Attestation, (RA) and Data Integrity (DI) defense mechanisms overhead as
a % of the baseline insecure applications. BM: Bare-Metal.

40 30 20 10 0 10 20 30

(a) Flash (%)

Firmware
updater

Connected
display

Smart
light

Smart
locker

Smart
thermostat

136.9KB

150.6KB

151.5KB

183.0KB

166.4KB

139.0KB

231.0KB

155.7KB

187.6KB

168.3KB

129.6KB

221.6KB

146.7KB

178.2KB

158.8KB

98.4KB

191.0KB

118.0KB

149.4KB

127.7KB
Mbed-uVisor
RA (OS)
DI (OS)
DI (BM)

10
0 50 0 50 10

0
15

0
20

0
25

0
30

0
35

0

(b) Stack+Heap (%)

10.1KB

9.1KB

9.1KB

9.0KB

9.3KB

25.3KB

55.8KB

24.3KB

24.3KB

24.5KB

7.7KB

38.3KB

6.9KB

7.1KB

7.0KB

2.5KB

35.4KB

1.6KB

1.6KB

1.8KB

0 20 40 60 80 10
0

12
0

14
0

(c) RAM (%)

130.2KB

131.2KB

129.5KB

138.0KB

131.8KB

83.1KB

116.3KB

82.4KB

91.0KB

84.7KB

64.9KB

98.1KB

64.3KB

73.1KB

66.5KB

42.2KB

77.8KB

41.5KB

50.1KB

43.8KB

Fig. 6. Summary of BenchIoT memory utilization metrics for µVisor, Remote
Attestation (RA), and Data Integrity (DI) defense mechanisms overhead as a
% over the baseline applications. The size in KB is shown above each bar.

TABLE III
SUMMARY OF BENCHIOT MEMORY ISOLATION AND CONTROL-FLOW

HIJACKING METRICS FOR MBED-µVISOR, REMOTE ATTESTATION (RA)
AND DATA INTEGRITY (DI) DEFENSE MECHANISMS OVERHEAD AS A

PERCENTAGE OF THE BASELINE INSECURE APPLICATIONS. BM:
BARE-METAL

Defense Type Benchmark Metric
Max. Code
Reg. ratio

Max. Data
Reg. ratio # ROP gadgets # Indirect calls DEP

µVisor (OS)

Smart-light 0.0% 0.0% 10,990 (29.9%) 207 (14.4%) 7
Smart-thermostat 0.0% 0.0% 12,087 (31.1%) 199 (11.8%) 7
Smart-locker 0.0% 0.0% 12,318 (28.6%) 211 (13.4%) 7
Firmware Updater 0.0% 0.0% 10,364 (32.8%) 190 (11.8%) 7
Connected display 0.0% 0.0% 11,478 (-4.3%) 198 (-63.5%) 7

RA (OS)

Smart-light -0.2% 0.0% 8,833 (4.4%) 195 (7.7%) X
Smart-thermostat -0.2% 0.0% 9,765 (5.9%) 197 (10.7%) X
Smart-locker -0.2% 0.0% 10,408 (8.6%) 205 (10.2%) X
Firmware Updater -0.2% 0.0% 8,556 (9.7%) 189 (11.2%%) 7
Connected display -0.1% 0.0% 12,603 (5.1%) 561 (3.5%) X

DI (OS)

Smart-light 0.0% -0.1% 8,398 (-0.8%) 181 (0.0%) 7
Smart-thermostat 0.0% -0.1% 9,231 (0.1%) 178 (0.0%) 7
Smart-locker 0.0% -0.8% 9,567 (-0.1%) 186 (0.0%) 7
Firmware Updater 0.0% -0.01% 7,878 (1.0%) 170 (0%) 7
Connected display 0.0% -1.8% 12,082 (0.8%) 542 (0%) 7

DI (Bare-metal)
Smart-light 0.0% -0.1% 6,040 (0.4%) 103 (0.0%) 7
Smart-thermostat 0.0% -0.2% 6,642 (1.0%) 98 (0.0%) 7
Smart-locker 0.0% -1.1% 7,015 (0.3) 108 (0.0%) 7
Firmware Updater 0.0% -0.01% 5,332 (0.4%) 90 (0.0%) 7
Connected display 0.0% -2.6% 9,697 (2.2%) 462 (0.0%) 7

data integrity mechanism is different between the bare-metal
and the OS benchmarks. The bare-metal benchmarks are
consistently smaller than their OS counterparts. As mentioned
earlier in Section V, the bare-metal benchmarks differ in their
implementation although they provide the same functionality.
These differences are also manifested in the Flash metrics.

C. Security Evaluation

Minimizing privileged execution: Minimizing privileged
execution is a desired security property (Section III-A). How-

ever, as shown in Figure 7, the remote attestation and data
integrity mechanisms (for both OS and bare-metal) share the
risk of over-privileged execution that are present in the inse-
cure baseline, since they do not target minimizing privileged
execution. Even with these defenses applied, almost the entire
application runs in privileged mode (e.g., 98.9% for Smart-
light using remote attestation in Figure 7(a)). The µVisor,
however, shows the highest reduction in privileged execution.
For example, only 1.4% of Smart-light runs in privileged
mode. The Firmware-updater shows the lowest reduction for
µVisor (i.e., 55.4%) since it requires privileges to execute
correctly (i.e., writing to Flash and running the new firmware).
However, the µVisor still reduces the total privilege cycles
by 44%. These improvements are expected since the µVisor
runs all-application code in non-privileged mode, except for
the µVisor and OS code. The increase in SVC cycles in
all defenses is because they utilize system calls to execute
their code. For example, the highest increase in SVC cycles
is remote attestation that uses an SVC every 25ms to hash
the firmware. Since the Smart-light application is the longest-
running benchmark, it will intuitively have the largest increase
in SVC cycles (i.e., 2,173.7%). The percentage of the increase
is not shown in bare-metal benchmarks since the baseline does
not use SVC calls.

Enforcing memory isolation: The insecure baseline appli-
cation allows access to all code and data, thus its maximum
code region ratio and maximum data region ratio are both 1.0.
Enforcing memory isolation reduces both ratios. The remote
attestation mechanism isolates its own code in a separate
region using the MPU. Thus, the maximum code region is the
rest of the application code other than the remote attestation
code—the improvement in the maximum code region ratio
is 0.2% in Table III. Similarly, the data integrity mechanism
improves the maximum data region ratio. However, for both
mechanisms 99% of the code and data is still always accessible
to the normal application. The µVisor enables manual data
isolation between threads using special API calls. However,
we did not use this feature since we aim to evaluate the general
characteristics of defenses and not develop our own.

Control-flow hijacking protection: As shown in Table III,
none of the mechanisms reduce the attack surface against code
reuse attacks (i.e., ROP gadgets and indirect calls). The µVisor
and remote attestation mechanisms increase the code size of
the application, intuitively they will increase the number of
ROP gadgets and indirect calls. The largest increase in the
number of ROP gadgets occurs with the µVisor at an average
of 23.6% for the five benchmarks since it requires larger code
to be added. The data integrity mechanism on the other hand
only instruments the benchmark with small code to enable
and disable the secure data region, and thus causes limited
increase in the number of ROP gadgets and indirect calls.
The reduction in the number of ROP gadgets and indirect
calls for the connected display application of the µVisor is
because the display driver was disabled, and thus its code
was not linked to the application. An option to improve these
defenses against code reuse attacks is to couple them with

9

0 20 40 60 80 10
0

12
0

(a) Total privileged
 cycles (%)

Firmware
updater

Connected
display

Smart
light

Smart
locker

Smart
thermostat

-44.0%

-98.6%

-98.6%

-98.3%

-97.6%

1.1%

0.1%

-0.5%

1.3%

-0.3%

-2.1%

0.5%

0.0%

0.5%

-0.5%

-0.0%

-0.8%

0.2%

1.2%

-0.0%

0 20 40 60 80 10
0

12
0

(b) Privileged thread
 cycles (%)

-44.7%

-100.0%

-100.0%

-100.0%

-100.0%

0.9%

-1.5%

-2.2%

-0.4%

-2.0%

-2.1%

0.4%

0.0%

0.5%

-0.5%

-0.0%

-0.8%

0.2%

1.3%

-0.0%

0 2 4 6 8 10
(c) SVC cycles (%)

216.9%

35.2%

1307.3%

311.3%

115.9%

82.2%

185.3%

2173.7%

526.7%

183.2%

-1.0%

2.0%

-1.8%

-0.3%

2.2%

0.0%

0.0%

0.0%

0.0%

0.0%
Mbed-uVisor
RA (OS)
DI (OS)
DI (BM)

Fig. 7. Summary of BenchIoT comparison of minimizing privileged execution
cycles for Mbed-µVisor, Remote Attestation (RA) and Data Integrity (DI)
defense mechanisms as a % w.r.t the total runtime execution cycles. The
overhead as a % of the baseline insecure applications is shown above each
bar. BM: Bare-Metal

established mechanisms such as CFI. Moreover, an important
aspect in defending against control-flow hijacking is enabling
DEP. However, only the remote attestation configures the MPU
to enforce DEP. The µVisor does not enforce DEP on heap.
A similar observation was made by Clements et al. [15]. The
data integrity mechanism enables all access permissions to the
background region (i.e., all the memory space) then configures
the MPU for various regions it is interested in. However,
regions that are not configured remain with the writable and
executable permissions, thus breaking DEP.

D. Energy Evaluation

Now we look at the energy implication of the benchmarks
(Figure 8). While all mechanisms showed similar runtime
overhead, the energy consumption for the µVisor mechanism
increases significantly for the Smart-light benchmark. The
Smart-light benchmark spends large amounts of time in its
sleep cycle, and since the µVisor disables sleep cycles, the
increase is pronounced in this application. Since the µVisor
disables sleep cycles, it consistently has an adverse effect on
energy consumption for all applications and this correlates
to a drop in sleep cycles as shown in Figure 5. Even if
security mechanisms provide similar runtime overhead (e.g.,
data integrity and µVisor for Smart-light), the difference in
energy consumption can vary widely, with an increase of
20% for µVisor. Such a conclusion cannot be obtained simply
from the metric of the total runtime overhead, but only when
used in conjunction with our metric of sleep cycles or energy
consumed.

For the bare-metal benchmarks, the lack of an OS results in
a lack of the sleep manager, and thus the device keeps polling
and drawing the same average power all throughout. This can
be noticed by the lack of sleep cycles in Figure 5 for the bare-
metal benchmarks. Thus, difference in energy consumption is
caused by the increase in total runtime due to the defense
mechanism.

E. Code Complexity Comparison to BEEBS

To measure the complexity of BenchIoT benchmarks, we
measure the cyclomatic complexity [54] and compare to the

5 0 5 10 15 20 25 30
(a) Power Overhead (%)

Firmware
updater

Connected
display

Smart
light

Smart
locker

Smart
thermostat

0.171mW

0.178mW

0.173mW

0.153mW

0.163mW

0.167mW

0.163mW

0.144mW

0.153mW

0.163mW

0.169mW

0.164mW

0.143mW

0.155mW

0.162mW

0.184mW

0.174mW

0.185mW

0.171mW

0.174mW Mbed-uVisor
RA (OS)
DI (OS)
DI (BM)

80 70 60 50 40 30 20 10 0 10 20 30 40 50

(b) Energy Overhead (%)

0.39mJ

3.21mJ

11.62mJ

2.35mJ

0.37mJ

0.38mJ

11.42mJ

9.69mJ

2.35mJ

0.37mJ

0.38mJ

11.5mJ

9.59mJ

2.34mJ

0.37mJ

1.96mJ

12.51mJ

12.99mJ

3.31mJ

0.8mJ

Fig. 8. Summary of power and energy consumption with the BenchIoT
benchmarks for the defense mechanisms as a % overhead of the baseline
insecure applications. Power and energy values are shown above each bar in
mW and mJ, respectively. BM: Bare-metal

TABLE IV
COMPARISON OF CODE COMPLEXITY BETWEEN BENCHIOT AND BEEBS.

Benchmark Suite Cyclomatic Complexity Lines of Code
Minimum Maximum Median Minimum Maximum Median

BEEBS 3 1,235 16 22 6,198 97
BenchIoT (Bare-metal) 2,566 3,997 2,607 17,562 23,066 17,778
BenchIoT (OS) 5,456 6,887 5,497 31,828 37,331 32,038

BEEBS [4] benchmarks. BEEBS has been used for security
evaluation in embedded systems by EPOXY [17] and for
energy evaluation by many prior works [55]–[57]. We exclude
HAL libraries from the measurements for both benchmark
suites as they differ based on the vendor and the hardware
as discussed in Section IV-D. This provides a consistent
comparison without the influence of the underlying hardware.

Table IV shows the comparison by computing the min-
imum, maximum, and median cyclomatic complexity and
lines of code across all benchmarks. BenchIoT shows much
larger numbers—median complexity is higher by 162X (bare-
metal) and 343X (Mbed OS). The results are expected since
BEEBS is designed to evaluate the energy efficiency of the
architecture, and not meant to provide stand-ins to real IoT
applications. For example, BEEBS excludes peripherals and
does not incorporate network functionality.

VIII. RELATED WORK

Numerous benchmarking suites have been proposed by the
systems research community. However we focus our discus-
sion on benchmarks targeting µCs and IoT-µCs. Table V shows
a comparison between BenchIoT and other benchmarks.

Desktop benchmarks: Soteria [60] is a static analysis sys-
tem targeting IoT platforms (e.g., Samsung’s SmartThings

TABLE V
A COMPARISON OF BENCHMARKS AND THEIR CATEGORIZATION WITH

RESPECT TO TASK TYPE, NETWORKING COMMUNICATION, AND
PERIPHERALS BETWEEN BENCHIOT AND OTHER BENCHMARKING SUITES.

Benchmark
Task Type Network

Connectivity PeripheralsSense Process Actuate

BEEBS [4] X
Dhrystone [7] X
CoreMark [6] X
IoTMark [58] X X partially (bluetooth only) only I2C
SecureMark [59] X

BenchIoT X X X X X

10

market), which are assumed to be connected to the cloud.
IoTAbench [61] and RIoTBench [62] are benchmarks for
large-scale data analysis of IoT applications. BenchIoT how-
ever targets IoT-µCs.

High-end embedded systems benchmarks: Mibench [5] is
a set of 35 general purpose applications targeting embedded
systems that are deigned to evaluate the performance of the
system. The benchmarks are user-space applications, with
some of the benchmarks assuming the presence of an OS
and file system. ParMiBench [63] is an extension of Mibench
targeting multi-core embedded processors. Other benchmarks
target specific applications of embedded systems. Media-
Bench [64] targets multimedia applications. DSP-stone [65]
evaluates compilers for Digital Signal Processing (DSP) ap-
plications for embedded systems. BenchIoT benchmarks differ
from the above since we focus on IoT benchmarks, enabling
security evaluations of IoT-µCs, and incorporating networking.
µCs Benchmarks: The Worst-Case Execution Time

(WCET) [66] evaluates the worst execution time for real-
time systems. Dhrystone [7] is a synthetic benchmark to
evaluate integer performance. BEEBS [4] is a collection
of benchmarks from Mibench, WCET, DSP-stone, and
the Livermore Fortran kernels [67] to evaluate energy
consumption for bare-metal systems. CoreMark [6] targets
evaluating processor performance. However, all target a
specific metric, do not utilize peripherals, and do not
show most of the characteristics of IoT applications. In
contrast, BenchIoT is aimed to enable security evaluation, it
incorporates IoT application characteristics, and covers both
bare-metal and OS benchmarks.

IoT-µCs benchmarks: IoTMark [58] evaluates the energy
overhead of wireless protocols such as Bluetooth. Secure-
Mark [59] measures performance and energy for implementing
TLS on IoT edge nodes, it does not however demonstrate con-
nectivity. BenchIoT on the other hand demonstrates TCP/IP
connectivity as well as security, performance, memory, and
energy evaluation.

IX. DISCUSSION

Extending BenchIoT: The flexible design of BenchIoT en-
ables users to extend it with their customized metrics or
benchmarks. For example, a user interested in cycles spent
executing function foo can extend the global data structure
of the metric collector library, instrument foo with the Ben-
chIoT API at the beginning and at the end of foo, and add
the metric to the result collection interface. Only 10 LoC
are needed for this customized metric. Moreover, users can
evaluate their customized benchmarks using the BenchIoT
evaluation framework. The users customized benchmark can
use external peripherals (e.g., BLE) that were not included
in core BenchIoT benchmarks. We note that the reason for
excluding external peripherals from the five benchmarks is
portability. For example, to add BLE users will need to buy an
additional hardware module for BLE and use its non-portable
software libraries. Thus, external peripherals were excluded
from the core benchmark suite. Since users can easily add

their own applications and evaluate them, we leave the choice
of adding external peripherals to the users. More details are
available at [20].

Portability of BenchIoT: We believe BenchIoT can be ex-
tended to ARMv8-M, as it shares many of the characteristics
of ARMv7-M (i.e., include the TrustZone execution). ARMv8-
M however is a fairly new architecture, and a limited number
of boards are available at the time of writing. We leave this as
future work. For other architectures, the concepts of BenchIoT
are applicable. However, since BenchIoT follows a software-
based approach, the main task is porting the metric collector
runtime library, since it handles exception entry and exit. These
are architecture dependent (e.g., calling conventions, registers)
and require architecture dependent implementation.

X. CONCLUSION

Benchmarks are pivotal for continued and accelerated in-
novation in the IoT domain. Benchmarks provide a com-
mon ground to evaluate and compare the different security
solutions. Alternatively, the lack of benchmarks burdens re-
searchers with measurements and leads to ad-hoc evaluations.
For IoT-µCs, the problem is exacerbated by the absence
of commonly measured evaluation metrics, the tedious mea-
surement process, and the multi-dimensional metrics (perfor-
mance, energy, security).

Concerned by the rising rate of attacks against IoT devices
and the ad-hoc evaluation of its defenses, we developed
BenchIoT, a benchmarking suite and an evaluation framework
for IoT-µCs to enable evaluating and comparing security
solutions. The suite is comprised of five representative bench-
marks, that represent salient IoT application characteristics:
network connectivity, sense, compute, and actuate. The ap-
plications run on bare-metal or a real-time embedded OS
and are evaluated through four types of metrics—security,
performance,memory usage, and energy. We illustrate how the
evaluation metrics provide non-trivial insights, such as the
differing effects of different defenses on consumed energy,
even though both show a similar runtime overhead. BenchIoT
benchmarks are open sourced freely available to the research
community [20].

ACKNOWLEDGEMENTS

We thank our shepherd Mohamed Kaaniche and the anony-
mous reviewers for their insightful comments. This work
was supported by NSF CNS-1801601, NSF CNS-1718637,
Northrop Grumman Cybersecurity Research Consortium, and
in part by Sandia National Laboratories. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of our sponsors. Sandia National Laboratories is a
multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. SAND2019-
4009 C.

11

REFERENCES

[1] ARM, “Mbed-OS,” https://github.com/ARMmbed/mbed-os.
[2] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.
[3] ——, “Spec cpu2006 memory footprint,” SIGARCH Comput. Archit.

News, vol. 35, no. 1, pp. 84–89, Mar. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1241601.1241618

[4] J. Pallister, S. J. Hollis, and J. Bennett, “BEEBS: open benchmarks
for energy measurements on embedded platforms,” CoRR, vol.
abs/1308.5174, 2013. [Online]. Available: http://arxiv.org/abs/1308.5174

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on. IEEE, 2001, pp. 3–14.

[6] EEMBC, “Coremark - industry-standard benchmarks for embedded
systems,” http://www.eembc.org/coremark.

[7] R. P. Weicker, “Dhrystone: a synthetic systems programming bench-
mark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030,
1984.

[8] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “Tytan: tiny trust anchor for tiny devices,” in Design Automation
Conference (DAC), 2015 52nd ACM/EDAC/IEEE. IEEE, 2015, pp. 1–6.

[9] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite: A
security architecture for tiny embedded devices,” in Proceedings of the
Ninth European Conference on Computer Systems. ACM, 2014, p. 10.

[10] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for embedded
systems software,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 743–754.

[11] D. Midi, M. Payer, and E. Bertino, “Memory safety for embedded
devices with nescheck,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. ACM, 2017,
pp. 127–139.

[12] M. Werner, T. Unterluggauer, D. Schaffenrath, and S. Mangard,
“Sponge-based control-flow protection for iot devices,” arXiv preprint
arXiv:1802.06691, 2018.

[13] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax:
lightweight hardware-assisted attestation of program execution,” in Pro-
ceedings of the International Conference on Computer-Aided Design.
ACM, 2018, p. 106.

[14] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “Cfi care: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2017, pp. 259–284.

[15] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “Aces:
Automatic compartments for embedded systems,” in 27th USENIX
Security Symposium (USENIX Security 18). USENIX Association.

[16] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu,
“Securing real-time microcontroller systems through customized mem-
ory view switching,” in Network and Distributed Systems Security
Symp.(NDSS), 2018.

[17] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer, “Protecting bare-metal embedded systems with
privilege overlays,” in Security and Privacy Symp. IEEE, 2017.

[18] M. Tancreti, V. Sundaram, S. Bagchi, and P. Eugster, “Tardis: software-
only system-level record and replay in wireless sensor networks,”
in Proceedings of the 14th International Conference on Information
Processing in Sensor Networks. ACM, 2015, pp. 286–297.

[19] L. Luo, T. He, G. Zhou, L. Gu, T. Abdelzaher, and J. Stankovic,
“Achieving repeatability of asynchronous events in wireless sensor
networks with envirolog,” in Proceedings of 25TH IEEE International
Conference on Computer Communications (INFOCOM).

[20] “BenchIoT,” https://github.com/embedded-sec/BenchIoT.
[21] ARM, “Optional memory protection unit,” http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.dui0553a/BIHJJABA.html.
[22] ——, “Armv7-m architecture reference manual,” https://developer.arm.

com/docs/ddi0403/e/armv7-m-architecture-reference-manual, 2014.
[23] E. Sourcing, “Reversal of fortune for chip buy-

ers: average prices for microcontrollers will
rise,” http://www.electronics-sourcing.com/2017/05/09/
reversal-fortune-chip-buyers-average-prices-microcontrollers-will-rise/,
2017.

[24] R. York, “ARM Embedded segment market update,”
https://www.arm.com/zh/files/event/1 2015 ARM Embedded
Seminar Richard York.pdf, 2015.

[25] ARM, “Cortex microcontroller software interface standard,” https://
developer.arm.com/embedded/cmsis.

[26] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1868–1882.

[27] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,
2016, pp. 969–986.

[28] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security. ACM,
2007, pp. 552–561.

[29] J. Salwan, “ROPgadget - Gadgets Finder and Auto-Roper,” http://
shell-storm.org/project/ROPgadget/, 2011.

[30] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Computing Surveys (CSUR), vol. 50, no. 1, p. 16, 2017.

[31] FreeRTOS, “FreeRTOS,” https://www.freertos.org.
[32] J. Ko, K. Klues, C. Richter, W. Hofer, B. Kusy, M. Bruenig, T. Schmid,

Q. Wang, P. Dutta, and A. Terzis, “Low power or high performance?
a tradeoff whose time has come (and nearly gone),” in European
Conference on Wireless Sensor Networks. Springer, 2012, pp. 98–114.

[33] X. Li, X. Liang, R. Lu, X. Shen, X. Lin, and H. Zhu, “Securing
smart grid: cyber attacks, countermeasures, and challenges,” IEEE
Communications Magazine, vol. 50, no. 8, 2012.

[34] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and
S. Zanero, “An experimental security analysis of an industrial robot
controller,” in Security and Privacy (SP), 2017 IEEE Symposium on.
IEEE, 2017, pp. 268–286.

[35] T. Does, D. Geist, and C. Van Bockhaven, “Sdio as a new peripheral
attack vector,” 2016.

[36] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, 2015.

[37] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 447–462.

[38] ARM, “Mbed-SDK,” https://os.mbed.com/handbook/mbed-SDK.
[39] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating systems

for low-end devices in the internet of things: a survey,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp. 720–734, 2016.

[40] E. Ronen, A. Shamir, A.-O. Weingarten, and C. OFlynn, “Iot goes
nuclear: Creating a zigbee chain reaction,” in Security and Privacy (SP),
2017 IEEE Symposium on. IEEE, 2017, pp. 195–212.

[41] “Smart sensors for electric motors embrace the IIoT,” https://www.
engineerlive.com/content/smart-sensors-electric-motors-embrace-iiot,
2018.

[42] “Industrial Sensors and the IIoT,” https://www.motioncontrolonline.
org/content-detail.cfm/Motion-Control-Technical-Features/
Industrial-Sensors-and-the-IIoT/content id/1716, 2016.

[43] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, “Smart nest thermo-
stat: A smart spy in your home.”

[44] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation.” in NDSS, 2013.

[45] T. Kim, C. H. Kim, H. Choi, Y. Kwon, B. Saltaformaggio, X. Zhang, and
D. Xu, “Revarm: A platform-agnostic arm binary rewriter for security
applications,” 2017.

[46] ARM, “Mbed-uVisor,” https://github.com/ARMmbed/uvisor.
[47] H. Tan, W. Hu, and S. Jha, “A remote attestation protocol with trusted

platform modules (tpms) in wireless sensor networks.” Security and
Communication Networks, vol. 8, no. 13, pp. 2171–2188, 2015.

[48] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,
“Pioneer: verifying code integrity and enforcing untampered code exe-
cution on legacy systems,” in ACM SIGOPS Operating Systems Review,
vol. 39, no. 5. ACM, 2005, pp. 1–16.

[49] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “Swatt: Software-
based attestation for embedded devices,” in Security and privacy, 2004.
Proceedings. 2004 IEEE symposium on. IEEE, 2004, pp. 272–282.

12

https://github.com/ARMmbed/mbed-os
http://doi.acm.org/10.1145/1241601.1241618
http://arxiv.org/abs/1308.5174
http://www.eembc.org/coremark
https://github.com/embedded-sec/BenchIoT
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/BIHJJABA.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/BIHJJABA.html
https://developer.arm.com/docs/ddi0403/e/armv7-m-architecture-reference-manual
https://developer.arm.com/docs/ddi0403/e/armv7-m-architecture-reference-manual
http://www.electronics-sourcing.com/2017/05/09/reversal-fortune-chip-buyers-average-prices-microcontrollers-will-rise/
http://www.electronics-sourcing.com/2017/05/09/reversal-fortune-chip-buyers-average-prices-microcontrollers-will-rise/
https://www.arm.com/zh/files/event/1_2015_ARM_Embedded_Seminar_Richard_York.pdf
https://www.arm.com/zh/files/event/1_2015_ARM_Embedded_Seminar_Richard_York.pdf
https://developer.arm.com/embedded/cmsis
https://developer.arm.com/embedded/cmsis
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/
https://www.freertos.org
https://os.mbed.com/handbook/mbed-SDK
https://www.engineerlive.com/content/smart-sensors-electric-motors-embrace-iiot
https://www.engineerlive.com/content/smart-sensors-electric-motors-embrace-iiot
https://www.motioncontrolonline.org/content-detail.cfm/Motion-Control-Technical-Features/Industrial-Sensors-and-the-IIoT/content_id/1716
https://www.motioncontrolonline.org/content-detail.cfm/Motion-Control-Technical-Features/Industrial-Sensors-and-the-IIoT/content_id/1716
https://www.motioncontrolonline.org/content-detail.cfm/Motion-Control-Technical-Features/Industrial-Sensors-and-the-IIoT/content_id/1716
https://github.com/ARMmbed/uvisor

[50] S. A. Carr and M. Payer, “Datashield: Configurable data confidentiality
and integrity,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. ACM, 2017, pp. 193–204.

[51] FreeRTOS-MPU, “FreeRTOS-MPU,” https://www.freertos.org/
FreeRTOS-MPU-memory-protection-unit.html.

[52] “STM32479I-EVAL,” http://www.st.com/resource/en/user manual/
dm00219329.pdf.

[53] Mbed-uVisor, “mbed OS can’t sleep when uVisor is enabled,” 2017,
https://github.com/ARMmbed/uvisor/issues/420, 201.

[54] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[55] J. Pallister, S. J. Hollis, and J. Bennett, “Identifying compiler options to
minimize energy consumption for embedded platforms,” The Computer
Journal, vol. 58, no. 1, pp. 95–109, 2013.

[56] N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder,
“Static analysis of energy consumption for llvm ir programs,” in Pro-
ceedings of the 18th International Workshop on Software and Compilers
for Embedded Systems. ACM, 2015, pp. 12–21.

[57] J. Constantin, L. Wang, G. Karakonstantis, A. Chattopadhyay, and
A. Burg, “Exploiting dynamic timing margins in microprocessors for
frequency-over-scaling with instruction-based clock adjustment,” in De-
sign, Automation & Test in Europe Conference & Exhibition (DATE),
2015. IEEE, 2015, pp. 381–386.

[58] EEMBC, “Iotmark - an eembc benchmark,” https://www.eembc.org/
iot-connect/about.php.

[59] ——, “Securemark - an eembc benchmark,” https://www.eembc.org/
securemark/.

[60] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety and
security analysis,” in USENIX Annual Technical Conference (USENIX
ATC), Boston, MA, 2018.

[61] M. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey, and B. Vandiver,
“Iotabench: an internet of things analytics benchmark,” in Proceedings
of the 6th ACM/SPEC International Conference on Performance Engi-
neering. ACM, 2015, pp. 133–144.

[62] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An iot bench-
mark for distributed stream processing systems,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 21, p. e4257, 2017.

[63] S. M. Z. Iqbal, Y. Liang, and H. Grahn, “Parmibench-an open-source
benchmark for embedded multiprocessor systems,” IEEE Computer
Architecture Letters, vol. 9, no. 2, pp. 45–48, 2010.

[64] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in Microarchitecture, 1997. Proceedings., Thirtieth Annual
IEEE/ACM International Symposium on. IEEE, 1997, pp. 330–335.

[65] V. Zivojnovic, “Dsp-stone: A dsp-oriented benchmarking methodology,”
Proc. of ICSPAT’94, 1994.

[66] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen
wcet benchmarks: Past, present and future,” in OASIcs-OpenAccess
Series in Informatics, vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2010.

[67] F. H. McMahon, “The livermore fortran kernels: A computer test of the
numerical performance range,” Lawrence Livermore National Lab., CA
(USA), Tech. Rep., 1986.

13

https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
http://www.st.com/resource/en/user_manual/dm00219329.pdf
http://www.st.com/resource/en/user_manual/dm00219329.pdf
https://github.com/ARMmbed/uvisor/issues/420
https://www.eembc.org/iot-connect/about.php
https://www.eembc.org/iot-connect/about.php
https://www.eembc.org/securemark/
https://www.eembc.org/securemark/

