
SMoTherSpectre: Exploiting Speculative Execution
through Port Contention

Atri Bhattacharyya ∗

EPFL
Alexandra Sandulescu †

IBM Research – Zurich
Matthias Neugschwandtner†

IBM Research – Zurich

Alessandro Sorniotti †
IBM Research – Zurich

Babak Falsafi∗
EPFL

Mathias Payer∗
EPFL

Anil Kurmus †

IBM Research – Zurich

ABSTRACT

Spectre, Meltdown, and related attacks have demonstrated that
kernels, hypervisors, trusted execution environments, and browsers
are prone to information disclosure through micro-architectural
weaknesses. However, it remains unclear as to what extent other
applications, in particular those that do not load attacker-provided
code, may be impacted. It also remains unclear as to what extent
these attacks are reliant on cache-based side channels.

We introduce SMoTherSpectre, a speculative code-reuse attack
that leverages port-contention in simultaneously multi-threaded
processors (SMoTher) as a side channel to leak information from a
victim process. SMoTher is a fine-grained side channel that detects
contention based on a single victim instruction. To discover real-
world gadgets, we describe a methodology and build a tool that
locates SMoTher-gadgets in popular libraries. In an evaluation on
glibc, we found hundreds of gadgets that can be used to leak infor-
mation. Finally, we demonstrate proof-of-concept attacks against
the OpenSSH server, creating oracles for determining four host key
bits, and against an application performing encryption using the
OpenSSL library, creating an oracle which can differentiate a bit of
the plaintext through gadgets in libcrypto and glibc.

CCS CONCEPTS

• Security and privacy→ Side-channel analysis and counter-

measures.

KEYWORDS

side-channel; simultaneous multithreading; speculative execution;
attack; microarchitecture

∗firstname.surname@epfl.ch
†{asa, eug, aso, kur}@zurich.ibm.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3363194

ACM Reference Format:

Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus . 2019.
SMoTherSpectre: Exploiting Speculative Execution through Port Contention.
In 2019 ACM SIGSAC Conference on Computer & Communications Security

(CCS ’19), November 11–15, 2019, London, United Kingdom. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3319535.3363194

1 INTRODUCTION

Spectre [23, 24, 29] and Meltdown [26] form a new class of micro-
architectural attacks. These attacks leverage weaknesses in specu-
lative execution (Spectre) or separation between privileged and un-
privileged code (Meltdown) to leave micro-architectural traces [5].
Both Spectre and Meltdown leverage a side channel based on the
memory architecture to leak data from the address space of a target
(e.g. from another process or from the kernel).

While micro-architectural side channels were known before the
discovery of Meltdown and Spectre, their applicability was mostly
limited to targets applying data-dependent control flow patterns or
memory accesses. In this older class of vulnerabilities, an attacker
would observe the micro-architectural changes to shared resources
caused by the execution of a victim. For example, in a cache-based
attack, the adversary would prime the cache, let the victim execute,
and then detect which locations have been evicted from the cache.
Such a side channel leaks addresses and allows the adversary to
learn information from data-dependent execution. An effective
mitigation strategy is to eliminate data-dependent control flow
over sensitive data, such as cryptographic material.

In contrast, Spectre and Meltdown render this class of attacks
generic and significantly harder tomitigate through software changes
only. The side channel is now used indirectly, in a way that – cru-
cially – does not rely on poor choices in the development of the tar-
get application. In Spectre, for instance, the attacker first primes the
speculation engine (e.g., by preparing the branch target buffers) as
well as the cache-based side channel; the victim then misspeculates
at an attacker-controlled location and thereby leaks information [5].
The attacker can then read out the cache-based side channel. In
light of these new attack vectors, architectural, system-wide de-
fenses such as Kernel Page-Table Isolation [15], retpolines [33], or
microcode updates must be rolled out to protect the system against
attacks. One proposed microarchitectural defense is to revert all
side effects of speculative execution [21].

https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/3319535.3363194

One mitigating factor is that so far, with the exception of
Netspectre-AVX [29], all existing attacks rely on side channels that
are invariably cache-based to read out information. This in turn
requires the presence of specific gadgets in the victim, which are
often hard to find. Consider the example of Branch Target Injection
(BTI), the technique used in Spectre v2 [23]: in the initial exploit,
no suitable gadget was identified in the kernel. The attack was suc-
cessful because it redirected speculative control flow to externally
provided code, in the form of eBPF kernel code. This observation
justifies why mitigations such as retpoline are not employed at
large by user-space programs.

In this paper, we show that speculation attacks (e.g., through
branch target injection) can leak arbitrary secrets from generic
user-space programs through a side channel that is not based on
the memory architecture. In particular, we show that branch target
injection can be used on existing program code, without requir-
ing the injection of attacker code. To this end, we first show that
port contention can be used as a powerful side channel when ex-
ecuting with simultaneous multi-threading (SMoTher). We then
exploit port contention as a side channel to transmit information
during speculative execution (SMoTherSpectre). This shows that,
because the transmission occurs before speculative execution ends,
reverting side effects of speculative execution would not be suffi-
cient as a defense. Finally, we show how suitable portions of code
can be found in target binaries automatically.

Other related work has looked at execution-unit-sharing as a
side channel [1, 2, 11, 35]. Portsmash [2], concurrently developed to
our work, demonstrates that port sharing leaks code access patterns
and successfully extracts secrets from a known vulnerable version
of OpenSSL. We are, however, the first to characterize this side
channel and leverage it for a speculative execution attack, providing
a full working proof of concept that leaks data from an up-to-date
OpenSSL version. Further, we attack the OpenSSH server, leaking
bits from the host’s RSA key.

This paper makes the following contributions:

• A precise characterization of the port-contention side chan-
nel (SMoTher);

• A speculative execution attack (SMoTherSpectre) that
demonstrates the suitability of non-cache-based side chan-
nels to leak information. We show an end-to-end attack
using speculation based on BTI by combining it with the
port contention side channel;

• An automated technique to find target speculative gadgets
in programs; and

• Real world attacks where we target BTI gadgets in the
OpenSSH server and in the latest version of OpenSSL, along
with a SMoTher gadget from the libc.

2 BACKGROUND

The work in this paper relies on the complex interplay between soft-
ware and hardware. In the following, we provide the background
information necessary to understand SMoTher and SMoTherSpec-
tre.

CPU Microarchitecture. A modern CPU is typically split into
two main components: the frontend and the backend (or execution
engine). The frontend predicts where to fetch instructions from

Figure 1: Instructions from the window are scheduled to ports

shared by sets of execution units. A single instructionmay be sched-

uled per port per cycle.

and creates a program-order stream of instructions to be executed
by the backend. The instructions are either decoded and executed
“as-is” in RISC ISAs (e.g., IBM POWER or ARM) or broken down
into RISC-like instructions called µops in CISC ISAs (e.g., x86 or
IBM Z). For brevity we refer to all instructions executed by the
backend as µops. Once fetched and decoded, the µops are placed in
an instruction window (also referred to as issue queue or reservation
stations) to be scheduled and dispatched to execution units when
their operands are ready. Every cycle, the scheduler searches the
instruction window to identify which µops are ready for execution
and which execution unit is available to dispatch them to. µops can
execute out of program order (e.g., a later µop in program order can
execute earlier) if their operands are ready and a relevant execution
unit is available. Ideally, all execution units would be designed to
handle every type of operation to maximize throughput. In prac-
tice, execution units are specialized and only the more commonly
used ones are replicated. A group of execution units share a port,
indicating their availability in a given cycle. Contention for a port
leads to delays in execution. Figure 1 demonstrates scheduling in-
structions from an execution window containing three µops, where
contention for port 3 prevents the second µop from being scheduled
in the same cycle as the other two.

Speculative Execution. Because the stream of µops is predicted
but is not guaranteed to execute, complete and make its state visible

to software, the backend also contains a re-order buffer that commits
the state of each completed µop in program order to the software
visible structures (i.e., register file and memory). This execution of
µops is speculative because the frontend may have mispredicted the
direction and/or the target address of a branch operation. Upon mis-
prediction, the pipeline flushes all µops in the re-order buffer and
restarts fetching and decoding µops. While executing on the mis-
predicted path, the processor accesses the cache hierarchy leaving
side-effects which lead to cache-based side channels even though
the values accessed are discarded and do not impact the executing
software.

Simultaneous Multithreading. Out-of-order processors pro-
vision a large fraction of silicon area to mechanisms that exploit
speculation and parallelism in execution. While these mechanisms
are designed for peak parallelism, most structures (e.g., execution

units, branch tables, physical registers, instructionwindow, re-order
buffer) remain underutilized on average. SimultaneousMultiThread-
ing (SMT) is a technique to improve utilization of these structures
by allowing µops from multiple threads (e.g., two in x86 and eight
in IBM POWER) to execute simultaneously on a single core. In-
dividual SMT threads maintain their own architectural state, but
share many microarchitectural structures in the processor pipeline
simultaneously. SMT (or HyperThreading as Intel brands its im-
plementation) is entirely transparent to software to which a single
core appears as multiple logical cores. Besides the execution units,
physical registers and instruction window, it is an implementation’s
choice as to which other structures SMT threads share. Experiments
have proven that the branch predictor can be shared between hy-
perthreads [6, 18] on Intel CPUs.

Speculative Execution Attacks. Speculative execution can be
exploited by priming the branch predictor with sufficient history
such that it is tricked into predicting the wrong target for a branch.
Because branch direction history (i.e., taken or not taken) is a shared
resource, an attacking process can prime the branch predictor of
its victim. Similarly, a branch target buffer predicting the target
address for a branch can be primed by an attacking process. This
works for both conditional branches as well as indirect branches.
In a conditional branch, such as an array-size check in Spectre
V1, the CPU can be tricked into speculatively executing an out-
of-bounds array access in spite of the failing length check. If the
target address of the length check is not in the cache then the
memory fetch will take longer than the following speculatively
executed instructions. In an indirect branch, the CPU can be tricked
into speculatively executing arbitrary code in a victim process
by providing a malicious branch history through a temporally or
spatially (in the case of SMT) co-located attacker process.We discuss
related work in Section 7.

Cache-timing Side Channel. Speculative execution attacks,
such as Spectre, exploit the fact that a speculatively executed
and then discarded operation does have side effects on the micro-
architectural state, even if it has none on the architectural state. For
example, an instruction that operates on a value stored in memory
will need to fetch that value and cause the corresponding memory
region to be pulled into the cache. The side-effect that the mem-
ory region is now cached is not undone when the instruction is
discarded instead of retired, and can be measured using cache side
channels. For example, in Spectre V1 the victim code uses two de-
pendent array lookups, where the result of the lookup of the first
array is used as an index into the second array. This index can
be leaked by measuring access times to the second array through
a flush and reload attack. By ensuring that the second array has
been flushed from the cache before the victim code executes, and
measuring the access times afterwards, only the lookup of the index
that has been used by the victim code will be significantly faster.

3 SMOTHER

In this section, we describe and evaluate SMoTher, a side channel
based on port-contention, present in SMT architectures. SMoTher
is based on the following observation: two co-located (i.e., running
on the same physical core) hardware threads of execution share
execution units. Instructions that are scheduled to execute on the

same execution port will contend for the available resources. We
show how this contention can be measured, at first in a coarse-
grained way, i.e., with large sequences of instructions scheduled
on the same port on both threads, and then in a fine-grained way,
i.e., with minimal sequences of instructions. The result is that an
unprivileged attacker process can detect whether a co-located victim
process is running an instruction on a given port.

3.1 Ideal covert channel

In this experiment, we demonstrate port contention between two
threads running simultaneously on the same physical core and
describe how it can be measured in ideal conditions.

3.1.1 Experiment design. Executing instructions that occupy a spe-
cific port and measuring their timing enables inference about other
instructions executing on the same port. We first choose two in-
structions, each scheduled on a single, distinct, execution port. One
thread runs and times a long sequence of single µop instructions
scheduled on port a, while simultaneously the other thread runs
a long sequence of instructions scheduled on port b. We expect
that, if a = b, contention occurs and the measured execution time
is longer compared to the a , b case.

3.1.2 Experimental setup. We run experiments on an Intel Core
i7-6700K CPU running Ubuntu 16.04.4 stock kernel, version 4.15.0.
Both attacker and victim are pinned to different hardware threads
on the same physical core. The CPU governor is set to Performance

for a constant clock frequency. The “performance” state is config-
ured below the turbo frequency range to lower non-deterministic
factors in the environment. Apart from these changes, all other set-
tings are kept to their defaults. Most notably, speculative-execution-
related mitigations are left enabled.

In the measuring thread, we execute and time a sequence of
1,200 shl, a single µop instruction that executes on port 0 or port 6,
which we denote port 06, on this CPU. The colocated thread runs a
sequence of either 1,200 shl or popcnt instructions: the shl instruc-
tions directly contend for port 06 while the popcnt instructions will
introduce no contention as they execute only on port 1. Instruction-
to-port mappings are available through reverse engineering [10] or
the Intel Architecture Code Analyzer (IACA) tool.

3.1.3 Results and discussion. We report averages over 10,000 runs,
together with a 95%-confidence interval calculated using the Stu-
dent’s t-distribution. The experiment successfully demonstrates
that port contention occurs and that the SMoTher side channel
can be used to extract information, as we can see in Table 1. Indeed,
the run time of the contention experiment is about twice of the
non-contended one. This indicates that port contention is likely the
main bottleneck in this experiment.

This result shows how SMoTher can be used as a reliable covert
communication channel between two co-located threads. However,
as this experiment requires precisely choosing the type and number
of instructions running in one of the two threads, it is yet unclear if
port contention may serve as a practical side channel. We explore
this aspect in the next section.

Experiment Execution Time (cycles)
Port contention 1214 ± 67
No port contention 674 ± 13

Table 1: Port contention covert channel: a thread running a long se-

quence of port 06 instructions is twice as slow when a co-located

thread executes a long sequence of port 06 instructions, when com-

pared to a co-located thread executing a long sequence of port-1-

only instructions

3.2 Characterization of the side channel

We now analyse whether SMoTher is effective as a side channel for
distinguishing realistic sequences of instructions on a simultane-
ously executing, co-located victim process. Specifically, we want to
explore whether an attacker can distinguish between the different
sequences of instructions from a known set which the victim may
run. To encapsulate this property of the set, we define the term
SMoTher-differentiability.

SMoTher differentiability. Let us consider that the victim
runs one sequence out of a set V = {V0,V1, ...}. The attacker is
allowed to craft any sequence of instructions A and time multiple
iterations ofA running concurrently with the victim. If the attacker
can inferwhich sequenceVi ∈ V the victimwas running based on its
timing measurements, the sequences in V are said to be SMoTher-
differentiable. On its part, the attacker has a-priori knowledge of
what timing to expect when A runs concurrently with each of Vi ∈
V . It can use experiments in a similar, but controlled, environment
to generate this knowledge. Further, the attacker is allowed to use
any statistical test or metric to make its decision. Examples of such
metrics include the mean or the median of the timings, or their
distribution.

In experiments in later sections of this paper, we shall establish
various pairs of sequences to be SMoTher-differentiable. After
collecting attacker timings distributions for each victim sequence
in our controlled environment, we shall use the Student’s t-test
to establish statistical difference between them with at-least 95%-
confidence. We argue that an attacker, in an adversarial scenario,
can correlate its own timing distribution with either of the a-priori
distributions to identify the victim sequence.

At its core, SMoTher-differentiability implies that the sequences
in V have differing degrees of utilization on some specific port(s)
and vice-versa. The attacker would ideally choose a sequence of
instructions scheduled solely on these ports to maximize the chance
of encountering different levels of contention across the different
possibleVi . Through our experiments, wewish to explore how short
SMoTher-differentiable sequences can be and the ideal length of
attacker sequences to differentiate them.

Experiment design and setup. In our first experiment, we
consider a victim running sequences of either popcnt (port 1) or
ror (port 06) and an attacker timing a sequence of popcnt. We
vary the length of both attacker and victim sequences, and check
for SMoTher-differentiability by noting the percentage change in
mean execution time for the attacker. In a second experiment, the
victim runs either cmovz (port 06) instructions or popcnt. In this
case, the attacker times a sequence of bts (port 06) instructions
with both operands as registers.

To run this experiment, an orchestrator process is used to fork
the victim and attacker processes, and to set their core affinities
so that they share a physical core. We require the execution of the
target sequence in the victim to temporally overlap with the (timed)
execution of the attacker sequence to assure port contention. There-
fore, the processes use a synchronization barrier which ensures
that any following instructions will be run concurrently. Thereafter,
each process runs their respective sequence, using rdtscp to take
timestamps at the beginning and end of each run. The timestamps
tell us the number of cycles taken to execute the sequence and were
used to also check that the executions were properly synchronized.
Atomic operations on variables in shared memory were used to
implement the synchronization. We repeat this process to collect
multiple timing samples.

In this set of experiments, we keep the same hardware and OS
configuration as used in the covert channel experiment, while pre-
cisely controlling the synchronization of threads through the addi-
tional instrumentation described above.

Results. Figure 2 plots the average difference in attacker execu-
tion time between the two sequences of victim instructions for each
experiment. The length of the sequence for the victim was taken
from the set {1, 4, 8, 16, 32} while the attacker sequence varied in
length between one and 100 instructions.

Our measurements confirm that timing short sequences of in-
structions is feasible: for a vast majority of sequence-length combi-
nations the victim sequences were SMoTher-differentiable using
the Student’s t-test on the attacker’s running time distributions.
While timing popcnt, 83% of all combinations plotted in Figure 2a
showed significant differences in means between the victim’s se-
quences of popcnt and ror.

The measured differences vary from close to 0% to 40%. Longer
sequences of instructions in the victim lead to higher differences and
less variability in measurements. Only 48% of popcntmeasurements
with sequence of 1 victim instruction are SMoTher-differentiable,
as opposed to 83% for a sequence of 4, and 100% for a sequence of
32 victim instructions. This means that distinguishing a sequence
of one victim instruction (max. 9% difference and more variability)
is much harder than a sequence of 32 victim instructions (max. 38%
difference and less variability).

We observe that there is an optimal number of attacker instruc-
tions to measure a victim instruction sequence of a given length,
which increases with the number of victim instructions: from 10
attacker instructions for one victim instruction to 45 instructions
for 32 victim instructions. This is explained by the following obser-
vations: contention for longer instruction sequences in the attacker
is easier to time, since attacker and victim sequences are more likely
to overlap. This effect fades when the attacker sequence becomes
significantly longer than the victim’s, at which point only a small
portion of the executed instructions will contend, thereby leading
to a smaller difference.

To show the breadth of possible SMoTher-differentiability re-
sults, we perform a second experiment, with a victim running
instructions which may be scheduled to more than one port. Specif-
ically, the victim runs either cmovz (port 06) or popcnt (port 1). The
attacker times a sequence of bts instructions (port 06) to measure
the contention on ports zero and six. Figure 2b shows that multiport
instructions are still SMoTher-differentiable. However, variance is

0 20 40 60 80 100
of instructions in the attacker

0

5

10

15

20

25

30

35

40

45
A
tt
a
ck
e
r
e
x
e
cu

ti
o
n
 t
im

e
 d
if
fe
re
n
ce
 (
%
)

(a) SMoTher attack using popcnt to detect if the co-located victim

runs on port 1.

0 20 40 60 80 100
of instructions in the attacker

0

5

10

15

20

25

30

35

40

45

A
tt
a
ck
e
r
e
x
e
cu

ti
o
n
 t
im

e
 d
if
fe
re
n
ce
 (
%
)

 1 victim instructions

 4 victim instructions

 8 victim instructions

16 victim instructions

32 victim instructions

(b) SMoTher attack using bts to detect if the co-located victim runs

on port 06.

Figure 2: SMoTher side channel characterization. Each data point represents the difference between the average execution time of the attacker

thread, between the port contention scenario and the baseline. We do not plot the few data points where Student’s t-test shows no statistically

significant difference between both distributions at 95%-confidence. The data points for which the attacker runs fewer instructions than the

victim are plotted in grey.

higher, and we notice a steeper cut-off point beyond the optimal
number of attacker instructions. Indeed, intuitively, with more exe-
cution ports available, the instructions are less likely to contend. In
practice, this means the attacker may need more runs to extract in-
formation, and the choice of the number of attacker instructions is
more important than in the previous experiment. As in the previous
experiment, we observe that the optimal number of attacker instruc-
tions increases with the number of victim instructions. Beyond this
number, most experiments show lower SMoTher-differentiability,
with most between 0 and 5%.

While our results show that the SMoTher side channel exists
and can be measured even for a small sequence of instructions,
we have noted a number of takeaways and pitfalls to avoid during
measurements, namely:

• Synchronisation of the target code sequence in the victim
and the timed code sequence in the attacker is extremely
important, more so when the target code sequence in the
victim is short;

• Pipeline bottlenecks other than port contention may occur
and overshadow the side channel. One such example is read-
after-write hazards;

• The CPU may eliminate the execution of some instructions
based on their operands (one such case is zero idioms). This
results in those operands not being executed, and removing
contention;

• Some instructions (e.g., those from the SSE and AVX exten-
sions) are subject to aggressive power-saving features on
modern CPUs. This makes measuring port contention more
difficult (and the power savings may in fact serve as its own
side channel [29] separately from SMoTher).

Finally, we note that practical instruction sequences are unlikely
to be identical repeated instructions. However, this is not required
for practical SMoTher side channels: it is only required that, among
a sequence of instructions, they exercise different degees of port

pressure on the port that the attacker is measuring. We further ex-
pand on this idea in Section 5 for practical SMoTher-differentiable
sequences.

4 SMOTHERSPECTRE

SMoTherSpectre is a speculative code-reuse attack technique
which starts at an indirect jump on the victim’s usual execution path.
The attacker leverages Branch Target Injection (BTI) to “poison” the
CPU’s branch predictor such that when the victim’s fetch unit asks
for the target of the indirect jump, it is sent the address of a separate
data-dependent conditional jump within the victim’s binary with
SMoTher-differentiable fall-through and target sequences. During
the period of the speculative execution, the victim evaluates the
condition and jumps to either the target or fall-through sequences.
The attacker times a sequence of relevant instructions to identify
which sequence is run on the victim (SMoTher), thereby inferring
the outcome of the condition and learning some information about
the victim’s data.

SMoTherSpectre complements and extends existing attacks [5,
23, 24] which use cache-based side channels to exfiltrate secrets.
Using such channels implies that these exploits i) require the pres-
ence of special gadgets in the victim code, or the ability to inject
them; and ii) depend on speculative execution leaving persistent,
measurable microarchitectural side-effects.

Calls using function pointers in C/C++ are traditionally imple-
mented by indirect calls in assembly. While exploitable indirect
jumps are prevalent in most programs, the first observation lim-
its the set of available gadgets for ultimately leaking secrets. This
scarcity, along with the overheads of some software-only mitiga-
tions, justifies the use of user-space programs to not deploy coun-
termeasures such as retpolines or STIBP by default. In contrast,
SMoTher-differentiable gadgets are easily found (as we demon-
strate in Section 5). Almost every conditional jump can be part of a
SMoTher-gadget, requiring only its fall-through and target to be

Victim

load rdi, (secret)

load rax, (pointer)

jmp [rax]

 cmp rdi, 0

 jl <mark>

 popcnt

 ...

mark:

 ror

 ...

BTI gadget

Smother gadget

Attacker

rdtscp

ror

ror

ror

ror

ror

rdtscp

Poison BTB

load rax, smother

loop:

 jmp [rax]

jmp <loop>

Time smother gadget

Figure 3: Overview of the SMoTherSpectre components.

SMoTher-differentiable. For example, libcrypto from the OpenSSL
library contains more than 12,000 readily usable gadgets.

The second observation has lead to the proposal of defenses that
ensure that all changes to microarchitectural state be undone [21].
However, the port-contention based side-channel persists even
if the CPU were able to perform a perfect roll-back of changes
caused by non-retired instructions. The very fact that instructions
are speculatively executed remains a measurable quantity. These
characteristics allow SMoTherSpectre to present a more powerful
avenue of attack.

In this section, we first present the attacker model and objec-
tives for SMoTherSpectre. We then explain the basic premise of
the attack, the conditions required and how we ensure these are
met in our proof-of-concept. We then present a characterization of
the SMoTherSpectre side channel. Finally, we discuss the charac-
teristics of some SMoTher-gadgets we found in common system
libraries, and what information they may be used to leak.

4.1 Attacker model

The objective of a SMoTherSpectre adversary is to extract secret
information from a victim process and we make the following
assumptions about the attacker: i) they control code in a process
co-located with the victim process; ii) they can launch branch target
injection attacks.

The first assumption is justified: if the attacker can execute code
on the same machine of the victim, the scheduler may schedule the
attacker and victim on two different threads of the same physical
core. An example of such colocation may exist in public cloud
offerings where compute resources are shared at a fine granularity
between tenants: for IaaS, virtual cores for different customers may
map to the same physical core, for PaaS/SaaS processes for different
tenants may be similarly scheduled [4, 13].

Existing mitigations against BTI include software (retpolines)
and a set of hardware interfaces for flushing the indirect branch
predictors at the appropriate times and for not sharing them across
SMT threads (IBRS, IBPB and STIBP in Intel). These mitigations
come with a potentially severe performance impact [31]. As such,
these controls have been enabled only for selected system com-
ponents such as the kernel, and none of the user-space programs
we have analysed make use of them. The adversary also needs to
know the victim’s code base, which is possible through the use of

common libraries and open-sourced applications, and where it is
located in memory. It must be able to circumvent ASLR and similar
controls: the literature contains several examples [9, 19, 30] of how
this is achievable in practice, including an approach using the same
BTB weaknesses that make BTI possible.

4.2 Attack principle

Figure 3 shows a side-by-side layout of the code of a victim and an
attacker in the SMoTherSpectre setting. As the figure shows, the
attack requires two types of gadgets in the victim code:

• A BTI gadget: Stores secret data into memory or a register
(called the SMoTherSpectre target) followed by an indirect
branch that can be poisoned by the attacker;

• A SMoTher gadget: A data-dependent conditional jump
whose control variable is the SMoTherSpectre target, with
SMoTher-differentiable (see Section 3.2) target and fall-
through code paths.

The example BTI gadget in Figure 3 stores the secret into the
register rdi, a pointer into rax and finally jumps to the location
pointed to by rax. The corresponding SMoTher gadget contains
an rdi-dependent conditional branch where the jump target and
fall-through contain SMoTher-differentiable instruction sequences
(popcnt and ror).

Note an important difference between traditional data-dependent
control flow sequences and SMoTherSpectre. Data-dependent con-
trol flow sequences over confidential data are considered vulnera-
bilities, especially when found in cryptographic libraries. SMoTh-
erSpectre does not require such a vulnerability to be present in
the victim. It connects the loading of a secret variable to a regis-
ter or memory location (BTI gadget) with an altogether indepen-
dent, speculatively executed sequence, which happens to perform
a compare-and-jump over that same register or memory location
(SMoTher gadget). The two sets of instructionsmaywell be entirely
uncorrelated from a software development perspective, making the
pattern harder, if not entirely impossible, to eliminate.

The attacker proceeds in two main steps, as shown in Figure 3:
in the first phase the attacker performs traditional, Spectre v2 style
BTI and then enters in a busy wait sequence, for instance a sequence
of nop instructions. The purpose of the latter is to align the second
phase of the attack with the speculative execution of the mark or
fall-through sequence in the victim. In the second phase the at-
tacker performs a SMoTher-style timing of a carefully selected
sequence of instructions – ror in the example. The attacker then
proceeds to a statistical analysis of the gathered timing information
to learn one bit of information. This entire process can be repeated
with different gadgets to leak different bits, and thereby reconstruct
the secret. Note that while the example utilizes the indirect-branch
prediction hardware to steer speculative execution to gadgets, any
existing branch redirection method may be used for this purpose
(for example the return stack buffer).

4.3 Characterization of the Side Channel

In our experimental testbed to characterize the SMoTherSpectre
side channel, an orchestrator process forks a victim and an attacker
process, pins them to two threads on the same physical core and
executes an attacker and a victim process (similar to the testbed in

Section 3.2). Attacker and victim processes execute the body of a
loop after synchronization using atomic operations on shared mem-
ory. The body of the loop is constructed as described in Figure 3.

In our proof-of-concept, we leverage the branch target buffer
to redirect an indirect branch in the BTI gadget of the victim to
the SMoTher gadget. In order to maximize the success rate, we
i) insert a series of N always-taken branches just prior to the indirect
branch; ii) ensure that the addresses of the branches (including the
target of BTI) are located at congruent addresses between attacker
and victim; iii) disable ASLR; iv) evict the cache-line containing
the indirect jump pointer. As other works have shown, the random
ASLR offset can be leaked in a real-life attack [9, 30], and BTI can be
performed by aliasing addresses (in the BTB) with very high success
rates [18]. Therefore, we disregard these factors while creating our
proof-of-concept (PoC). Evicting the jump pointer allows us to
extend the duration of the victim’s speculative execution, in order
to establish an upper bound for accuracy and throughput for the
channel. In alternate settings, we have noticed that usual victim
computation can evict the pointer from the L1 cache. The resulting
period of speculation is enough for our attack to work.

Further, we introduce instrumentation to obtain information
about the success of the BTI attack. This information is sup-
plied by the Performance Counter Monitor (PMC) infrastruc-
ture and can be obtained by using the msr kernel module. We
use it to program the PMC counters to retrieve samples for the
BR_MISP_EXEC.TAKEN_INDIRECT_JUMP_NON_CALL_RET event, which is
triggered every time the target of a taken indirect jump is mispre-
dicted. PMC counters are sampled at the start of every loop and
once more at their end. BTI is successful whenever the difference
in the value of the counter is 1, given that the victim code contains
only one indirect jump.

The timed instruction sequence in the attacker consists of a
series of 42 crc32 instructions operating over randomly chosen,
nonzero values. The victim process contains an equivalent sequence
of crc32 instructions at the fall-through of the branch: given that
crc32 instructions execute exclusively on port 1, if BTI is successful
and the speculated conditional branch is not taken, the victim will
be competing for execution on port 1 with the attacker. The target of
the branch instead contains a sequence of instruction designed to be
executable on more ports (0,1,5,6) and thus display less contention
with the attacker.

We collect two sets of samples: one when the victim’s secret is set
to zero, and one where it is set to a nonzero value. Figure 4 shows
the results of the experiment on a Skylake platform (i7-6700K). As
we can see, the distributions obtained when the victim has a non-
zero secret generates more contention on port 1 and thus causes
the attacker to measure a higher time-stamp counter difference.
This is justified by the fact that a nonzero secret causes speculative
execution to be directed to the fall-through of the branch, which
we have designed with a competing sequence crc32 instructions.

In the next phase of the attack, we use the results of this ex-
periment as profiling information to read the side channel. To this
end, a bit sequence is generated and set - bit by bit - as the secret
value on the victim. Based on the results of Figure 4 we choose
a time-stamp counter difference of 89 as a threshold: if the mean
of the samples is higher than the threshold we conclude that the
secret is 1, and 0 otherwise. The experiment is run, 5 samples each

Figure 4: Probability density function (estimated using kernel den-

sity estimation) for the timing information of an attacker measur-

ing crc32 operationswhen running concurrentlywith a victim spec-

ulatively executing a SMoTher-gadget.

glibc ssl pthread ld crypto z stdc++ Together

rax 14 12 9 7 11 8 8 21

rbx 6 2 0 1 6 1 1 9

rcx 8 1 2 1 5 1 2 8

rdx 10 2 5 6 7 2 3 14

rsi 8 4 1 2 3 1 1 10

rdi 8 2 0 2 3 1 0 11

rsp 2 0 0 0 0 0 2 3

rbp 5 3 0 0 9 0 0 13

Table 2: Number of different leakable register bits (out of 64) us-

ing SMoTher gadgets from common system libraries, specifically

test-jxx one at a time, onmultiple iterations of the victimwith the

same register state.

are collected for 20, 000 secret bits. The attacker is able to correctly
guess the victim’s secret with a success rate of over 98%. The entire
experiment takes 0.83s as reported by time yeilding a sample rate
of 120,000 samples/second, and a leakage rate of 24, 000bit/s . A sim-
ilar experiment with guesses based on 1, 2, 3 and 4 samples result
in accuracies of 72%, 78%, 83%, and 90% respectively. As expected,
there is a trade-off between accuracy and leakage rate.

We repeated this experiment on a Haswell processor (i7-4790)
using the same attacker-timed sequence and victim’s SMoTher-
gadget. With a threshold of 85 cycles, the attacker was able to guess
the victim’s secret bit with an accuracy of 53%, 62%, 69%, 70% and
76% based on 1, 2, 3, 4 and 5 samples respectively. We also validated
the attack on a Broadwell processor (i3-5005u).

4.4 Discussion about SMoTher-gadgets

A SMoTher gadget is defined by two attributes: the condition on
which the jump depends and the sequences on both paths following
the jump. The latter determines whether the gadget can be used

in a SMoTherSpectre attack: the sequences must be SMoTher-
differentiable. The former determines the information leaked by
the gadget. In this section, we shall discuss some of the SMoTher-
gadgets found in real libraries, and what they can leak.

Common instructions which set the condition flags in SMoTher-
gadgets we found are cmp, test, add, sub. cmp-jxx sequences com-
pare a value in a register (or loaded from memory) against other
registers or against a constant. Each gadget reveals a constraint
on the value. test-jxx and and-jxx sequences perform a bitwise-
and of two values, setting flags based on the result. When one of
the values is a constant with a single bit set, the gadget can be
used to test whether specific bits are set in the first operand. Such
gadgets reveal the corresponding bits to the attacker. When the
second operand is not a constant, but a register whose value may
be predicted or controlled, the attacker gains the power to check
bits other than those specified by the constant gadgets.

Of the over 12,000 gadgets found in libcrypto, approximately:
• 2,800 are cmp operations
• 3,900 are test operations
• 1,500 are add operations
• 970 are or operations

There are around 350 cmp-jump gadgets which compare a value
in a register or inmemory against zero. Around a 100 gadgets, which
check for greater-than/lesser-than conditions against zero, can be
used to leak whether the value is positive or negative. Another
294 gadgets compare against (the constant) one, and 807 gadgets
compare against other constants. Around 370 cmp-jump gadgets
have a memory operand of which 118 compare with non-zero con-
stants. 300+ gadgets compare with values on the stack, of which
33 are against non-zero constants. Of all cmp-jump gadgets, more
than 400 check for signed or unsigned greater-than. The number
of signed or unsigned lesser-than is about the same.

For victims running in a loop, there are cases where the regis-
ter/memory state of interest will be the same across iterations. For
example, a register/memory location storing a secret, cryptographic
key can be expected to hold the same value across multiple calls to
the encryption function. The attacker can leverage the BTI gadget
to redirect the victim to different SMoTher-gadgets on different
iterations, each time leaking different information about the secret.
Over multiple iterations, the attacker can effectively leak multiple
bits of the same secret, chaining the leaks from different SMoTher-
gadgets. In Table 2, we show how many bits we can leak from the
registers by chaining SMoTher-gadgets found in commonly used
system libraries. To illustrate this for one specific register, Appen-
dix A lists the gadgets which can be chained to leak 21 bits from
rax.

5 GADGET DISCOVERY

As described in Section 4.2, we require two gadgets to be present
in the victim code for SMoTherSpectre. We investigate the char-
acteristics of ideal gadgets and how to find them in a given piece
of code. We introduce port fingerprinting to summarize the port
utilization of an instruction sequence and assess the potential to be
detected using SMoTher. Port fingerprinting enables a compari-
son of the port utilization of two instruction sequences and rank

combinations of instruction sequences based on their difference in
port utilization.

BTI Gadget. The purpose of the BTI gadget is to pass the secret
through a register to an arbitrary code target in the same process.
Depending on the attack scenario, the BTI gadget is the only piece
of code that is strictly required to be present in the victim. Ideally,
it just consists of two instructions: one that moves the secret into
a register and an indirect control-flow transfer. In order to maxi-
mize the speculative execution window, the target of the indirect
control-flow transfer should be retrieved from uncached memory.
An archetype of an ideal BTI gadget is a virtual function call in C++,
with the secret value being an argument to such a function call. In
the System V x86_64 calling convention, the first six parameters of a
function are passed in registers. Further, the typical implementation
of a virtual function call uses indirection through a vtable to resolve
the binding at runtime. Since the vtable is stored in memory, the
target of the call needs to be loaded, which can cause a speculation
window of upto a few hundred (~200) cycles if the vtable has been
evicted from the cache prior to the call. We can reasonably assume
that this will happen in practice if objects are created by an early
initialisation phase and used (potentially much) later in response to
external events. Similarly, calls to functions in dynamically-loaded
ELF (Executable and Linkable Format) libraries also employ an in-
direct jump, using a pointer from the Global Offset Table (GOT)
to facilitate dynamic symbol resolution. Arguments in such calls
may contain sensitive information which can be compromised by
an attacker using these jumps as BTI gadgets.

SMoTher Gadget. A SMoTher gadget is the receiving end of
a BTI gadget. Depending on the attack scenario, it is either already
part of the victim, or can be supplied via an additional attack vector.
It starts with an instruction that compares the register to a known
value. The known value can either be a known immediate in the
code, or, more powerfully, an attacker-controlled value specified
via an additional attack vector. The next instruction needs to be a
conditional control flow transfer based on this comparison leading
to SMoTher-differentiable sequences. To maximize the chances
of SMoTher-differentiability, the instruction sequences should
each have a distinct port fingerprint such that they can be clearly
distinguished from one another. This depends on the layout of the
execution engine: on Intel Skylake, a prime example would be one
branch with a sequence of AES instructions (only port 0) and another
branch with a sequence of MMX instructions, predominantly limited
to port five. Besides, the instructions should ideally not load from or
store to memory, as potential cache misses introduce noise. Further,
the more generic the instructions in the sequence are, the more
likely it is that their execution unit does not require a warm-up
phase during which execution is slow, again introducing noise.

5.1 Ranking SMoTher-gadgets

The instruction sequences we consider consist of basic blocks that
start at the respective branch targets. To identify instruction se-
quences that are ideal for SMoTher and compare them against one
another, we need to measure their suitability for SMoTher. The
primary criterion is that the compare instruction operand has to
match the register that is loaded with the secret in the BTI gadget.
Further, we evaluate the instruction sequence at the branch target

and fall-through by quantifying three properties: i) the port utiliza-
tion difference of the two branch targets (rp), ii) the difference of
the two branch targets in terms of the length of the branches (rl),
and iii) the amount of memory operations in both branches (rm).
To compare instruction sequences based on these properties, we
combine them using the rank product RP(д) = (∏k

i=1 rдi)1/k for
our k(= 3) properties.

To compare the port utilization, we first use Intel’s Architecture
Code Analyzer (IACA) to obtain a port fingerprint P for a given
instruction sequence. The port fingerprint is a summary that lists
the total number of cycles spent on every port for a given instruction
sequence P = p0 . . .p7. IACA internally uses a microarchitecture-
specific model of the processor to compute the cycles, taking out-
of-order execution into account. It also models the divider pipe
on Skylake, allowing port zero, which handles the complex div

instruction, to be ready for the next µop in the next cycle, while the
div is still being executed. As it cannot know better, IACA assumes
all CPU resources to be fully available prior to execution of the
sequence. An open-source alternative to IACA, OSACA [25] also
supports AMD processors.

To compare two port fingerprints P andQ , we subtract them and
then calculate the utilization difference as the sum over the vector:
rp =

∑i
0..7(|pi − qi |). The larger rp , the higher the difference in

port utilization of the two instruction sequences. The utilization
difference will be high for long instruction sequences that do not
share a port. Such instruction sequences lend themselves well to
SMoTher.

While a ranking based on the port utilization difference already
captures the most important aspect, it has one drawback: gadgets
where the branch instruction sequences are of different length, such
as 2 instructions vs. 20 will rank high, whereas we prefer sequences
of equal length for the timing. Therefore, we also include the inverse
of the length difference rl = abs(l1 − l2) between the sequences of
a gadget in the ranking.

Finally, we also take the potential noise into account that
can be caused by memory operations. On our targeted Sky-
lake processors, the ports 2, 3, 4 and 7 are used for schedul-
ing these. We include the inverse of the sum, rm , of the cycles
spent on these ports in both branches as an additional rank-
ing for the gadget. The final rank of a gadget дi is given by
RP(дi) = (rpi · (max(rl) − rli) · (max(rm) − rmi))1/3.

5.2 Finding Gadgets

We develop a tool to aid gadget discovery based on the popular
distorm3 disassembler and Intel’s Architecture Code Analyzer, and
use it to analyze a number of common system libraries that are likely
to be linked to a victim executable. For the analysis we only consider
gadgets with a branch length between 3 and 70 instructions, with
3 instructions being a reasonably low bound for smothering and
70 instructions being an upper bound for speculative execution.
Our search looks for valid instruction sequences starting at every
offset in the binary. Therefore, it would detect any SMoTher-gadget
resulting from an unintended sequences of bytes (starting from the
middle of an intended instruction) which might decode to valid
instructions. We show the results in Table 3, the libraries analyzed
are taken from a regular Ubuntu 18.04 LTS installation. We focus on

RDI RSI RDX RCX R8 R9

glibc 2.23 1155 1502 3864 4256 568 615

1040 932 257 1029 135 29

stdc++ 6.0 189 400 869 1399 97 73

209 65 98 276 58 14

ld 2.23 105 130 412 359 41 31

46 47 29 110 6 0

pthread 2.23 23 56 70 82 25 8

23 2 7 34 3 0

z 1.2.11 76 85 138 338 66 80

24 29 8 96 16 5

crypto 1.1 1132 1048 1659 2566 45 29

310 319 224 1036 239 167

ssl 1.1 243 239 376 500 39 21

95 32 29 239 12 1

Table 3: SMoTher-gadgets we found in common system libraries,

for the registers used to pass arguments in the System V x86_64

calling convention. First line: number of SMoTher-gadgets that use

the value in the register, second line: number of gadgets that use its

pointee.

SMoTher-gadgets that compare against the registers used in the
x86_64 calling convention and either use the value in the register
directly, or use it as a pointer and compare to a value pointed to in
memory. The rationale behind this is that BTI gadgets are typically
indirect calls that pass a secret, such as a cryptographic key, as a
parameter. The results show that we can find enough SMoTher-
gadgets even in a single common library such as glibc alone. Note
that this method applies irrespective of whether the library is loaded
at runtime or is statically linked into the victim’s binary. However,
none of the gadgets found were formed from instructions decoded
from unintended byte sequences.

One under-approximating limitation of our gadget search al-
gorithm is that it assumes that gadgets start from the latest flag-
setting instruction before the jump. Suppose a sequence in the vic-
tim’s code is shl 8, rax; test 1, rax; jz 0xadd;. Our tool will
find test 1, rax; jz 0xadd; as a SMoTher gadget which leaks the
least significant bit (LSB) of rax. However, the instructions preced-
ing this might perform computations which cause the gadget to leak
different information. The entire sequence is a different SMoTher
gadget which leaks the 9-th least significant bit of rax. The space
of usable SMoTher-gadgets exceeds the ones we have found, and
depend on the particular victim’s code.

6 REAL WORLD ATTACK

We demonstrate real-world attacks on OpenSSH and OpenSSL, two
commonly used programs handling sensitive secrets that have been
extensively hardened against regular and side-channel attacks.

6.1 OpenSSH attack

OpenSSH is widely used to securely and privately connect to servers
over untrusted networks. The confidentiality of the server’s private
key is essential to the security of the overall system. Leaking the
private server key allows an attacker to impersonate the server,
acting as a man in the middle. In the OpenSSH attack, we find a BTI

.rept 8;
addl r8d, r9d;
addl r10d, r11d;
addl r8d, r9d;
addl r10d, r11d;
.endr;

(a) Attacker-timed code

0x6f8dc: testl 0x100, (rdi)
0x6f8e2: je 6f8ef
0x6f8e4: mov 0x10(rbx),rax
0x6f8e8: sub 0x8(rbx),rax
0x6f8ec: sub rax,rsi
0x6f8ef: mov rbx,rdi
...

(b) Victim SMoTher gadget (glibc)

static void (* volatile ssh_bzero)
(void *, size_t) = bzero;

void explicit_bzero(void *p, size_t n) {
...
ssh_bzero(p, n);
...

}

(c) Victim BTI gadget (OpenSSH)

Figure 5: Gadgets from real-world libraries used in our SMoTherSpectre exploit for leaking the 7th least significant bit of rdx’s pointee

gadget in the default OpenSSH (version 7.2) SSH server binary avail-
able on Ubuntu 16.04 LTS, together with four SMoTher gadgets
in glibc version 2.23, and leak bits of the host key. As shown by
Heninger and Shacham [17], leaking a small fraction of bits enables
recovery of the entire key.

The threat model for this attack assumes a local attacker that is
able to initiate TCP connections to the ssh daemon. As before, we
assume that ASLR is disabled (or can be bypassed through other
means). Since the target BTI gadget runs pre-authentication, the
attacker only needs to connect and does not need to authenticate
to the server. In our PoC, the local attacker is running on the same
host. However, the same attack can be run from a colocated VM,
assuming the VMM schedules both attacker and victim VMs on
the same physical core. We also assume that the attacker is able
to spawn processes on the same physical core as the victim SSH
process: the assumption is realistic, as shown for example by Zhang
et al. [37].

Our BTI gadget resides in the explicit_bzero function (Figure 5c)
which clears regions of memory. The function is extensively used
to zero out sensitive data before memory is released as a counter-
measure against data leakage if that memory region is reused for
another purpose. To eliminate the possibility of dead-store opti-
mization by the compiler, explicit_bzero calls the standard bzero

function using a volatile function pointer. We exploit the indirect
jump generated for this function pointer call as the BTI gadget,
knowing that the first argument to the function (stored in register
rdi according to the System V calling convention).

In particular, we exploit an invocation of the BTI gadget where
the pointer refers to the server’s private host key (e.g., RSA key).
This invocation is present in the code path handling new connec-
tions, when the server loop forks new processes for each incom-
ing connection and loads the private host key from disk with the
key_load_private function. The cryptographic values (e.g., the ex-
ponents and modulus of the RSA key) are kept in memory to later
perform the ssh handshake but the buffer used to read out the file
from disk is zeroed out and freed. This gadget is particularly con-
venient since the attacker gets an arbitrary number of attempts
at discovering different bits of the same private key. Also, the at-
tacker can control when the victim process is spawned by initiating
connections to the ssh daemon.

An abridged version of the SMoTher gadget is shown in Fig-
ure 5b (see Appendix C for the full assembly listing). Our chosen
SMoTher gadget differs slightly from that described in Section 4.2
in that it compares the value of a memory location pointed to

by a register, not the value of the register itself. The target and
fall-through path differ in utilization of execution ports 0156. This
gadget is taken from glibc and demonstrates the availability of
SMoTher-gadgets in commonly linked libraries. The attacker times
a sequence of add instructions with register operands (port 0156)
shown in Figure 5a to specifically target the same ports.

We ran our attack on a slightly-modified sshd server. The ssh
server is modified to setup relevant performance counters to be
used for statistical and monitoring purposes. These counter values
are ignored by the actual attack. The other modification is to syn-
chronize the attacker with the BTI gadget (as in Section 4.3). For
other targets (i.e., OpenSSL), we have investigated alternate syn-
chronization mechanisms that do not require victim modification
and have good results. The server was compiled using the default
options for Linux on x86_64.

In the PoC of the attack, an orchestrator process randomly sets
the bit to be leaked before launching the server and attacker on
colocated logical cores. The attacker process is responsible for “poi-
soning” the BTB to cause mis-speculation on the victim process
handling the incoming ssh connection. Prior to BTI, the attacker
also performs a series of cache accesses that result in the eviction
of the server’s cache line containing the function pointer ssh_bzero.
This forces the victim’s indirect call instruction to miss in the cache
and speculate for a few cycles, increasing the BTI success rate. The
attacker process is otherwise identical to the victim and follows the
same code path, increasing the probability of the attacker having
the same branching history as the victim at the call site, thereby
increasing the success rate of BTI. The orchestrator launches an
ssh client on a separate physical core to connect to the server and
trigger the creation of the victim and attacker processes. Victim
and attacker process execute and the attacker is able to collect a
SMoTher-timing sample correlated to the value the LSB in byte 1
of the host private key.

The attack can be extended in two ways. First, we can pair our
BTI gadget with other SMoTher gadgets in the victim, enabling
us to leak other bits of the host private key. Second, we can find
other occurrences of the explicit_bzero BTI gadget (or other BTI
gadgets) where different secrets are held in registers or in memory.

In the explicit_bzero BTI gadget, we found that the value of
the register r12 equals the value of rdi, both pointing to the host
key in memory at the point of attack. Therefore, we are able to
use three other SMoTher-gadgets which dereference r12. These
gadgets allow us to leak extra bits from the host key, specifically the

4th LSB in byte 13, the 4th LSB in byte 14 and the 5th LSB in byte 56.
The corresponding assembly listings are shown in Appendix C.2.

Additionally, we can also find other BTI gadgets, or invocations
of explicit_bzero with different secrets. Other secrets erased by
this function include contents of the /etc/shadow file and client
passwords in cleartext received during login attempts.

6.2 OpenSSL attack

For OpenSSL, we target a BTI gadget in the libcrypto library (ver-
sion 1.1.1b, dated 26-Feb-2019) which is widely used for performing
cryptographic functions and a SMoTher gadget from glibc version
2.27.

Over the years, considerable effort was devoted to thwarting po-
tential attackers and to protect OpenSSL from side-channel attacks,
primarily by removing data-dependent memory-access or control
flow. Our attack, however, targets BTI gadgets (indirect jumps or
calls) that are found in code used to choose between encryption
modes, allowing for multiple modes of operation (such as ECB,
CBC, GCM) with the same block cipher. OpenSSL uses a context
variable that stores function pointers for encryption/decryption.
These pointers are set during the initialization phase depending on
the user-specified cipher mode.

As a result, cryptographic applications using libcrypto execute
an indirect call (the BTI gadget) during every block encryption or
decryption. Such gadgets are the result of commonly used coding
practices, and do not directly perform any data-dependent actions
based on the secret value. As in the OpenSSH attack, the use of func-
tion pointers leads to indirect calls in the compiled binary. While
security was the motivating factor for OpenSSH, OpenSSL uses
function pointers to support polymorphic-like behavior, enabling
our transient execution attack.

Our BTI gadget is contained in EVP_EncryptUpdate, and is
shown in Figure 6c. The third argument (in) contains a pointer to
the plaintext to be encrypted (and is therefore a secret). In accor-
dance with the System V calling convention, this pointer is stored
in register rdx prior to the call. The secret in our chosen SMoTher
gadget is the 3rd LSB in byte 1 of the plaintext, referenced through
rdx. An abridged version of the SMoTher gadget is shown in Fig-
ure 6b (see Appendix B for the full assembly listing).

In our attack, we model a victim that encrypts text using
OpenSSL’s EnVeloP (EVP) API. After performing the necessary
initializations, it performs a series of encryptions using calls to
EVP_EncryptUpdate. We have also instrumented the victim to
setup relevant performance counters which are only used for sta-
tistical and monitoring purposes and are not used in the attack.
The victim library does not contain any code to help the attacker
synchronize with the execution of the BTI gadget.

The attacker triggers the encryptions on the victim. It also runs
code that is almost identical to the victim apart from the following
differences. First, it loads the call pointer with the location of the
SMoTher gadget on the victim to trigger BTI on the victim pro-
cess. Second, it replaces the code at the target location by a delay
sequence and the SMoTher timing. The delay sequence consists of
a series of dependent instructions that allows the attacker to delay
for a controlled number of cycles, synchronizing with the victim’s
SMoTher gadget, before measuring the timing sample. Otherwise,

Pointer register Byte Offset Bit mask ∆ SMoTher timing

rdi 0x01 0x01 0.32% ± 0.21%

r12 0x38 0x10 0.64% ± 0.62%

r12 0x0d 0x08 0.66% ± 0.47%

r12 0x0c 0x08 0.42% ± 0.33%

Table 4: SMoTherSpectre results leaking the sshd private key.

Four gadgets, each targeting a different key bit identified by its byte

offset and bit mask, were used. We also show the mean timing dif-

ference percentage for the attacker’s SMoTher timing, separated

according to the value of the randomly-set target bit: all show a dif-

ference at 95% confidence.

the attacker runs code that mimics the victim: it performs the same
call to the encryption function where it follows the same sequence
of checks and jumps. It also runs in a loop performing the same
number of iterations, thus maximising the success of BTI. In each
iteration, the attacker gets one timing measurement. Between iter-
ations, the attacker performs a series of memory accesses designed
to evict the victim’s cache line holding the pointer to the encryption
function from the L1 cache to increase the BTI success rate. We
observed that other usual work being performed on the core can
have the same effect.

6.3 Experimental results

We run the OpenSSH attack on a quad-core, hyper-threaded Sky-
lake CPU (i7-6700K) with the server and attacker pinned on logical
cores 0 and 4 respectively (running on physical core 0). For each
connection attempt to the server, the orchestrator randomly sets
or resets the target bit, logs its value and the attacker measures a
SMoTherSpectre timing sample. We run the attack 10,000 times
and separate the collected samples based on the value of the target
bit on that particular run, yielding two sets of attacker timings
corresponding to the target bit being zero or one. Finally, we run
the Student’s t-test to check whether the sets are statistically dis-
tinguishable. We used this methodology on four SMoTher-gadgets
described in Section 6.1. Table 4 shows the results: the distributions
are differentiable with at-least 95% confidence for each of the four
gadgets. The attack does not require extremely high BTI success
rate: in our samples, we observe BTI success rates ranging between
16% and 25%. The whole experiment takes about 75 seconds of real-
time, of which a total of 20 seconds are spent by the orchestrator
waiting for the server to be fully setup before launching the client.

We run the OpenSSL attack on an i5-6200u CPU. A run of 100,000
encryptions is performed by the victim for each value of the secret
bit. The large number of encryptions is necessary to estimate the
probability density function for this SMoTher-gadget. A practi-
cal attack can confidently leak a bit with fewer encryptions. The
attack takes about 950 ms of userspace time, leading to a mea-
surement rate of more than 200,000 samples/second. The attacker
succeeded in BTI with a success rate up to around 80%. We have
found the time taken by the victim to reach the indirect call from
the call triggering encryption entry to be highly predictable. The
attacker is thus able to run the timing sequence concurrently with
the victim’s SMoTher-gadget without additional synchronization.
Figure 7 shows the distribution of timestamp counter difference

.rept 8;
btrl r8d, r9d;
btrl r10d, r11d;
btsl r8d, r9d;
btsl r10d, r11d;
.endr;

(a) Attacker-timed code

0xf5393: testq 0x400,(rdx)
0xf539a: je f5382
0xf539c: mov -0xb0(rbp),rdi
...
0xf5382: add 0x1,rax
...

(b) Victim SMoTher gadget (glibc)

if(ctx->cipher->do_cipher(ctx, out, in, inl))
{

*outl = inl;
return 1;

}
...

(c) Victim BTI gadget (OpenSSL)

Figure 6: Gadgets from real-world libraries used in our SMoTherSpectre exploit for leaking the 3rd LSB of byte 1 of rdx’s pointee

Figure 7: Probability density function (estimated using kernel den-

sity estimation) for the attacker’s timing running our SMoTher-

Spectre attack on OpenSSL, for when the victim’s secret bit is one

versus zero.

measured by the attacker for the SMoTher gadget. The distribu-
tions show a significant variation, with that corresponding to the
zero-secret tending towards higher values. The Student’s t-test is
able to successfully distinguish between them with 95% confidence.
The test reports a timing difference of 10.69% ± 6.31%.

6.4 Mitigating SMoTherSpectre

Mitigations for SMoTherSpectre can be subdivided in two cate-
gories: mitigations for SMoTher and mitigations for BTI.

SMoTher mitigations. The general idea of preventing
SMoTher attacks is to ensure that two threads with different privi-
leges (in the general sense) do not compete for the same execution
port.

Currently available software SMoTher mitigations are limited.
Apart from the straightforward but performance-costly possibility
of disabling SMT in its entirety (up to 10-15% overhead on Intel),
the OS scheduler can employ a side-channel aware strategy. For
example, the OS scheduler can decide to only colocate (on threads
on the same core) processes from the same user [12].

Finally, CPU-level mitigations could be deployed in the future,
possibly improving both security and performance over existing
mitigations. For instance, alternatives to SMT can be considered

to achieve thread-level parallelism within a core. These include
coarse-grained and interleaved multithreading.

BTI mitigations. Mitigations against branch target injection
are also known as Spectre v2 mitigations. These include retpolines,
which rewrite code to remove indirect calls [33], as well as CPU-
based controls. Intel has exposed to developers a set of security
controls that limit an attacker’s ability to perform BTI. While they
have been applied in selected cases, they have not been widely
adopted because of their overhead [7], and because in many cases,
the required gadgets were simply not present [23]. Wide adoption
of these mitigations may limit the SMoTherSpectre attack.

Summary. Fully mitigating the attack in either of these two
categories is sufficient to stop the attack presented in this paper.
However, SMoTherSpectre does not necessarily need to employ
BTI: it can be generalized to use any other form of speculative
control flow hijack, e.g., Return Stack Buffer (RSB) overflow [27]
or speculative return address overwrite [22]. In those cases, corre-
sponding mitigations would apply.

7 RELATEDWORK

Transient Execution Attacks. Transient execution attacks ex-
ploit instructions that are executed, yet not necessarily retired and
thus cover both attacks based on speculative execution as well as
out-of-order execution [5].

At the beginning of 2018, two security issues exploiting specu-
lative execution were revealed under the name “Spectre” [18, 23].
Spectre V1 (“Bounds Check Bypass”) exploits branch prediction
on a conditional branch to achieve an out-of-bounds access during
speculative execution: given a conditional branch that performs
a bounds-check on an array, the branch predictor is trained to
the in-bounds case by performing multiple executions of the corre-
sponding code with a benign index. When the code is then executed
with an out-of-bounds index, a misprediction occurs and the ar-
ray access with the malicious index is performed. If the result is
used in further computation such as another array access, it can be
leaked through a side channel. Spectre V2 (“Branch Target Injec-
tion”) exploits branch prediction on indirect control-flow transfers.
To this end the attacker first trains the branch predictor for a given
address to transfer control to an address of the attacker’s choosing.
The predictor will then use the branch history created by the at-
tacker for a spatially or temporally co-located victim. Again, a cache
side-channel can be used to leak data of the attackers choosing in
the following. The return stack buffer, which is used for return
statements in a similar fashion as the branch history is used for
indirect jumps has also been leveraged as a speculative execution

trigger [24, 27]. The return address on the stack has also been the
target of other work, showing that through load-to-store forward-
ing it can be speculatively overwritten, leading to a speculative
execution sibling of the classic stack buffer overflow [22].

Meltdown [26] (“Rogue Data Cache Load”), which was also re-
vealed in early 2018 exploits out-of-order execution: a memory
load instruction immediately after a high latency instruction might
fetch data into the cache even if it is not permitted to access the
actual memory location. The reason is that on certain CPUs, the
corresponding permission check is not on the critical path for the
data fetch and the exception is only triggered after the data fetch.
On such CPUs this allows reading arbitrary kernel memory from
userspace. Similarly, also privileged system register can be read
(“Rogue System Register Read”). The more recent Foreshadow [34]
attacks a similar phenomenon, “L1 Terminal Fault” in Intel nomen-
clature. If an instruction accesses a virtual address that is not in the
translation lookaside buffer (TLB) and the corresponding page table
entry’s (PTE) present bit is not set, this is referred to as a “terminal
fault”. During out-of-order execution, the processor computes a
physical address from the PTE, which is used for a lookup in the L1
data cache. Until the instruction retires and a page fault is raised,
cached data is forwarded to dependent instructions, which can be
used in an attack. This bypasses various access checks, including
SGX protection, extended page table address translation and system
management mode (SMM) checks, thus affecting virtualization and
SGX enclaves (enclave data is not encrypted in L1D). Also related to
out-of-order execution is the speculative store bypass [3, 20]: for a
code sequence of a dependent store and a load instruction, the load
instruction, if executed out-of-order before the store might retrieve
stale data from memory that can be used in a side channel. This
happens in cases where the CPU cannot detect the dependency in
the code sequence.

Transient execution attacks are not only a local security issue
that requires a victim device to execute attacker-controlled code.
As Netspectre [29] demonstrates they also work remotely. While
being less effective, they are still powerful enough to break, for
example, address space layout randomization.

Cache Side Channels. Cache side channels leverage timing
differences in accesses to different tiers of the memory hierarchy.
Accesses to cached locations will be faster, whereas accesses to
uncached locations will be slower, as the data needs to be fetched
from main memory. This principle applies to both data and instruc-
tions: Execution of code whose instructions are not cached will
take longer than execution of cached code.

To use an evict-and-time cache side channel, one first primes
the cache by executing a victim function and then measures how
long the function takes to execute – this is the baseline run. One
can now compare this baseline against further executions of the
function, with different cache sets evicted. If the time the function
takes to execute is slower than the baseline, the victim function
depends on the evicted cache set.

To use a prime-and-probe cache side channel, one first primes the
cache with known attacker-controlled addresses. One then waits for
the victim code to run. Afterwards, one measures the access time to
addresses used for probing: it will be low for addresses touched by
the victim code and high for others. The difference to evict-and-time

is that the attacker measures her own operation in contrast to the

execution of victim code. Both evict-and-time and prime-and-probe

have been extensively used to attack AES implementations [28, 32].
Another technique that became popular with attacks leveraging

a shared last-level cache (LLC) is flush-and-reload. It requires an
instruction that allows an attacker to flush a certain cache line, such
as clflush on x86_64. In a corresponding attack, the attacker first
flushes a cache line and then waits for the victim code to execute.
Afterwards the attacker times the access to the address, which
will be fast if the victim accessed (reloaded) it and slow otherwise.
Flush-and-reload is similar to prime-and-probe, but much more
fine-grained as individual cache lines can be targeted. It has been
used to leak information from the LLC, which is typically shared
among multiple CPU cores [36]. Related to flush-and-reload, flush-
and-flush [16] is based on the observation, that clflush will take
less time to execute when it is run on a location that is not cached.
The advantage over flush-and-reload is that no actual access that
would pull data into the cache is performed, making the attack
stealthier.

Finally, prime-and-abort leverages Intel’s transactional memory
mechanism to detect when a cache set has been evicted without
the need to probe the cache [8]. In contrast to all previous cache
side channels, it does not need to time an operation. Transactional
memory operations require transactional data to be buffered in the
cache which has limited space. A transaction set up by the attacker
will abort if the victim accesses a critical address.

Other Side Channels. Mitigations against cache-based side
channels have led researchers to explore other shared resources
as well. TLBleed [14] shows how the TLB can be used as a side
channel to leak a cryptographic key. Aforementioned Netspectre-
AVX [29] uses a side channel based on AVX instructions. This side
channel exploits the fact that the execution unit processing those
instructions employs aggressive power saving. When such units
have not been used for a long time, they execute much slower.

In particular, execution-unit-sharing-based side channels in the
SMT settings have been studied as early as in 2006: Wang and
Lee [35] demonstrate a multiply-based covert channel making use
of contention on execution units. Aciicmez and Seifert [1] extend
this work by analyzing its applicability as a side channel. Anders
Fogh [11] proposes a generalized result by analyzing contention
results of the cross product of 12 curated instructions. Finally, Ports-
mash [2], concurrently and independently demonstrates how port
contention can be used to leak sensitive cryptographic material
from OpenSSL. Portsmash relies on a known vulnerable implemen-
tation of OpenSSL, and therefore does not require any mitigation
beyond avoiding vulnerable code patterns. In contrast, SMoTh-
erSpectre does not require a secret-dependent control flow by
combining port contention with BTI, and thereby showing broader
applicability of the port contention side channel. Finally, in contrast
with all previous works, this work provides a characterization of
this side channel, including an analysis for low number of victim
instructions.

8 CONCLUSION

We further our understanding of possible attacks in the space of
speculative execution. This is crucial to design suitable defenses
and to apply them to the right systems. In particular, we show

that Branch Target Injection attacks against applications that do
not load attacker-provided code are feasible, by crafting an exploit
for the OpenSSH server and encryption using OpenSSL. To this
end, we present a precise characterisation of port contention, the
non cache-based side channel we use for the attack, and develop
a tool to help us find suitable gadgets in existing code. We will
open-source our proof of concept implementation, gadget finder, as
well as the data of our measurements to enable others to study this
interesting side channel. As a consequence, it is now clear that in
SMT environments defenses solely relying on mitigating cache side
channels, or solely relying on reverting microarchitectural state
after speculative execution, are insufficient.

In the immediate future, implementing existing BTImitigations is
sufficient to prevent SMoTherSpectre. Future work may mitigate
such attacks with lower performance overhead and better security
guarantees, for instance through side-channel resistant ways of
designing thread-level parallelism in upcoming CPUs.

REFERENCES

[1] Onur Aciicmez and Jean-Pierre Seifert. 2007. Cheap hardware parallelism implies
cheap security. In Fault Diagnosis and Tolerance in Cryptography, 2007. FDTC 2007.

Workshop on. IEEE, 80–91.
[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

García, and Nicola Tuveri. 2018. Port Contention for Fun and Profit. Cryptology
ePrint Archive, Report 2018/1060. https://eprint.iacr.org/2018/1060.

[3] AMD. 2018. Speculative Store Bypass Disable. https://developer.amd.com/
wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_
Whitepaper_final.pdf.

[4] Zack Bloom. 2018. Cloud Computing without Containers. https://
blog.cloudflare.com/cloud-computing-without-containers/.

[5] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2018. A Systematic Evaluation of Transient Execution Attacks and Defenses.
https://arxiv.org/abs/1811.05441.

[6] Intel Coorporation. 2016. Intel 64 and IA-32 architectures optimization reference
manual.

[7] Jonathan Corbet. [n.d.]. Taming STIBP. https://lwn.net/Articles/773118/.
[8] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.

Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX. In
USENIX Security Symposium.

[9] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In The 49th Annual

IEEE/ACM International Symposium on Microarchitecture. IEEE Press, 40.
[10] Agner Fog. [n.d.]. Instruction tables: Lists of instruction latencies, through-

puts and micro-operation breakdowns for Intel, AMD and VIA CPUs. https:
//www.agner.org/optimize/instruction_tables.pdf.

[11] Anders Fogh. [n.d.]. Covert Shotgun. https://cyber.wtf/2016/09/27/covert-
shotgun/.

[12] Anders Fogh and Christopher Ertl. [n.d.]. Wrangling with the Ghost: An
inside story of mitigating speculative execution side channel vulnerabilities.
https://i.blackhat.com/us-18/Thu-August-9/us-18-Fogh-Ertl-Wrangling-
with-the-Ghost-An-Inside-Story-of-Mitigating-Speculative-Execution-Side-
Channel-Vulnerabilities.pdf.

[13] Google [n.d.]. Google Compute Engine FAQ. https://cloud.google.com/compute/
docs/faq. Accessed: 2019-02-13.

[14] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In USENIX Security Symposium.

[15] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Mau-
rice, and Stefan Mangard. 2017. Kaslr is dead: long live kaslr. In International

Symposium on Engineering Secure Software and Systems. Springer, 161–176.
[16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: A Fast and Stealthy Cache Attack. In Detection of Intrusions and

Malware, and Vulnerability Assessment.
[17] Nadia Heninger and Hovav Shacham. 2009. Reconstructing RSA Private Keys

from Random Key Bits. In Advances in Cryptology - CRYPTO 2009, 29th Annual

International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009.

Proceedings (Lecture Notes in Computer Science), Shai Halevi (Ed.), Vol. 5677.
Springer, 1–17. https://doi.org/10.1007/978-3-642-03356-8_1

[18] Jann Horn. 2018. Reading privileged memory with a side-channel.
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-

with-side.html. Project Zero 3 (2018).
[19] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side

channel attacks against kernel space ASLR. In 2013 IEEE Symposium on Security

and Privacy. IEEE, 191–205.
[20] Secure Windows Initiative. 2018. Speculative Store Bypass. https:

//blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-
of-speculative-store-bypass-cve-2018-3639/.

[21] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2018. SafeSpec: Ban-
ishing the Spectre of a Meltdown with Leakage-Free Speculation. arXiv preprint
arXiv:1806.05179 (2018).

[22] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:
Attacks and Defenses. https://people.csail.mit.edu/vlk/spectre11.pdf.

[23] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. In IEEE Symposium on

Security and Privacy.
[24] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and

Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In USENIX Workshop On Offensive Technologies.

[25] Jan Laukemann, Julian Hammer, Johannes Hofmann, Georg Hager, and Gerhard
Wellein. 2018. Automated Instruction Stream Throughput Prediction for Intel
and AMD Microarchitectures. https://arxiv.org/abs/1809.00912.

[26] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security Symposium.

[27] Giorgi Maisuradze and Christian Rossow. 2018. Ret2Spec: Speculative Execution
Using Return Stack Buffers. In Conference on Computer and Communications

Security.
[28] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In Topics in Cryptology.
[29] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. 2018. NetSpec-

tre: Read Arbitrary Memory over Network. https://arxiv.org/abs/1807.10535.
[30] Alexander Sotirov. 2009. Bypassing memory protections: The future of exploita-

tion. In USENIX Security.
[31] Linus Torvalds. 2018. Linus on Spectre/Meltdown mitigations. https://lkml.org/

lkml/2018/1/21/192.
[32] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on

AES, and Countermeasures. Journal of Cryptology (2010).
[33] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-

injection. https://support.google.com/faqs/answer/7625886.
[34] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security Symposium.

[35] Zhenghong Wang and Ruby B. Lee. 2006. Covert and Side Channels Due to
Processor Architecture. In Proceedings of the 22Nd Annual Computer Security

Applications Conference (ACSAC ’06). IEEE Computer Society, Washington, DC,
USA, 473–482. https://doi.org/10.1109/ACSAC.2006.20

[36] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Attack. In USENIX Security Symposium.

[37] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-
VM side channels and their use to extract private keys. In the ACM Conference

on Computer and Communications Security, CCS’12, Raleigh, NC, USA, October

16-18, 2012, Ting Yu, George Danezis, and Virgil D. Gligor (Eds.). ACM, 305–316.
https://doi.org/10.1145/2382196.2382230

A GADGETS LEAKING 21 BITS OF RAX
The following table lists parts of SMoTher-gadgets which can be
used to leak 21 bits of information from rax. We also show which
library the gadget was found in.

https://eprint.iacr.org/2018/1060
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://arxiv.org/abs/1811.05441
 https://lwn.net/Articles/773118/
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
 https://cyber.wtf/2016/09/27/covert-shotgun/
 https://cyber.wtf/2016/09/27/covert-shotgun/
https://i.blackhat.com/us-18/Thu-August-9/us-18-Fogh-Ertl-Wrangling-with-the-Ghost-An-Inside-Story-of-Mitigating-Speculative-Execution-Side-Channel-Vulnerabilities.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Fogh-Ertl-Wrangling-with-the-Ghost-An-Inside-Story-of-Mitigating-Speculative-Execution-Side-Channel-Vulnerabilities.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Fogh-Ertl-Wrangling-with-the-Ghost-An-Inside-Story-of-Mitigating-Speculative-Execution-Side-Channel-Vulnerabilities.pdf
https://cloud.google.com/compute/docs/faq
https://cloud.google.com/compute/docs/faq
https://doi.org/10.1007/978-3-642-03356-8_1
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://people.csail.mit.edu/vlk/spectre11.pdf
https://arxiv.org/abs/1809.00912
https://arxiv.org/abs/1807.10535
https://lkml.org/lkml/2018/1/21/192
https://lkml.org/lkml/2018/1/21/192
https://support.google.com/faqs/answer/7625886
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1145/2382196.2382230

Address Comparison instruction Library

0xd3900 test 0x1, al glibc
0x1101cb test 0x2, al glibc
0x12f779 and 0x4, al glibc
0x29709 and 0x8, al glibc
0x126500 and 0x10, al glibc
0x7e83 and 0x20, al ld
0xc378e and 0x40, al glibc
0xd7e50 and 0x80, eax glibc
0x12cad9 test 0x2, ah stdc++
0xf1794 test 0x307, ax libcrypto
0x5f661 and 0x2100, eax glibc
0x11c7f6 and 0x2abd, eax glibc
0x10ca11 and 0x8000, eax glibc
0x17bcd4 test 0x100000, eax libcrypto
0x268de test 0x200000, eax ssl
0xbe656 and 0x3084a5, eax glibc
0x26f20 test 0x800000, eax ssl
0xb3ba0 test 0x1000000, eax glibc
0xb7db test 0x40000000, eax pthread
0x50e7b test 0x80000000, eax ssl
0xa6133 test 0x83000002, eax libcrypto

B OPENSSL ATTACK GADGETS

B.1 SMoTher gadget

The following gadget leaks the 3rd LSB from the byte at offset 1
from the pointer in rdx.

f5393: testq 0x400, (rdx)
f539a: je f5382
f539c: mov -0xb0(rbp), rdi
f53a3: mov -0xf0(rbp), edx
f53a9: mov (rdi, rax, 8), rax
f53ad: test edx, edx
f53af: mov rax, 0x50(rbx)
...
f5382: add 0x1, rax
f5386: add 0x20, rdx
f538a: cmp rax, -0x100(rbp)
...

C OPENSSH ATTACK GADGETS

C.1 SMoTher gadget with rdi pointer

The following gadget leaks the LSB from the byte at offset 1 from
the pointer in rdi.

...
6f8dc: testl 0x100, (rdi)
6f8e2: je 6f8ef
6f8e4: mov 0x10(rbx), rax
6f8e8: sub 0x8(rbx), rax
6f8ec: sub rax, rsi
6f8ef: mov rbx, rdi
6f8f2: mov ecx, 0xc(rsp)
6f8f6: mov edx, 0x8(rsp)
6f8fa: mov rsi, (rsp)

...

C.2 SMoTher gadgets with r12 pointer

The following gadget leaks the 5th LSB from the byte at offset 56
from the pointer in r12.

e8577: testb 0x10, 0x38(r12)
e857d: je e8608
e8583: sub 0x8, rsp
e8587: push rbx
e8588: pushq 0x0
e858a: pushq 0x0
e858c: mov edx, r8d
e858f: mov edx, r9d
e8592: mov r10d, ecx
e8595: sub r10d, r8d
e8598: mov r13, rsi
e859b: mov r12, rdi
...
e8608: sub 0x8,rsp
e860c: push rbx
e860d: push r14
e860f: push r15
...

The following gadget leaks the 4th LSB from the byte at offset
12 from the pointer in r12.

5220e: testb 0x8, 0xd(r12)
52214: je 52221
52216: xor edx, edx
52218: xor esi, esi
5221a: xor edi, edi
...
52221: mov r13, rcx
52224: add 0x3, r13
52228: sar 0x2, rcx
5222c: cmp 0x6, r13
...

The following gadget leaks the 4th LSB from the byte at offset
13 from the pointer in r12.

529a2: testb 0x8, 0xc(r12)
529a8: je 523da
529ae: mov -0x100(rbp), rcx
529b5: lea 0xc(rcx), rdx
529b9: cmp rax, rdx
...
523da: mov -0xf8(rbp), r13d
523e1: mov (rax), edx
523e3: add -0xe8(rbp), r13d
...

D RESPONSIBLE DISCLOSURE

The attacks presented in this paper were disclosed to Intel, OpenSSL
and AMD in late 2018.

©Copyright International Business Machines Corporation and EPFL 2019
All Rights Reserved
Printed in the United States of America (09/19/2019)
The following are trademarks of International Business Machines Corporation in the
United States, or other countries, or both.
IBM
IBM Research
IBM Z
POWER

Other company, product, and service names may be trademarks or service marks of
others. All information contained in this document is subject to change without notice.
The products described in this document are NOT intended for use in implantation,
life support, space, nuclear, or military applications where malfunction may result in
injury or death to persons. The information contained in this document does not affect
or change IBM product specifications or warranties. Nothing in this document shall
operate as an express or implied license or indemnity under the intellectual property
rights of IBM or third parties. All information contained in this document was obtained
in specific environments, and is presented as an illustration. The results obtained in
other operating environments may vary. THE INFORMATION CONTAINED IN THIS
DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for
damages arising directly or indirectly from any use of the information contained in
this document.
IBM Corporation
New Orchard Road
Armonk, NY 10504

	Abstract
	1 Introduction
	2 Background
	3 Smother
	3.1 Ideal covert channel
	3.2 Characterization of the side channel

	4 SMoTherSpectre
	4.1 Attacker model
	4.2 Attack principle
	4.3 Characterization of the Side Channel
	4.4 Discussion about SMoTher-gadgets

	5 Gadget discovery
	5.1 Ranking SMoTher-gadgets
	5.2 Finding Gadgets

	6 Real world attack
	6.1 OpenSSH attack
	6.2 OpenSSL attack
	6.3 Experimental results
	6.4 Mitigating SMoTherSpectre

	7 Related Work
	8 Conclusion
	References
	A Gadgets leaking 21 bits of rax
	B OpenSSL attack gadgets
	B.1 SMoTher gadget

	C OpenSSH attack gadgets
	C.1 SMoTher gadget with [style=inline,breaklines=false]@rdi@ pointer
	C.2 SMoTher gadgets with [style=inline,breaklines=false]@r12@ pointer

	D Responsible disclosure

