
T-Fuzz: Fuzzing by Program
Transformation

Hui Peng1, Yan Shoshitaishvili2, Mathias Payer1

1 2

Fuzzing as a bug finding approach
➢ Fuzzing is highly effective in finding bugs (CVEs​)
➢ Developers use it as proactive defense measure: OSS-Fuzz, MSRD​
➢ Analysts use it as first step in exploit development

2

Challenges for fuzzers
➢ Challenges

○ Shallow coverage
○ Hard to find “deep” bugs

➢ Root cause
○ Fuzzer-generated inputs cannot

bypass complex sanity checks in
the target program

start

end

check1

check2

check3

bug

Shallow code paths

Deep code paths

3

Existing approaches & their limitations
➢ Existing approaches focus on input generation

○ AFL improvements (searching for constants, corpus generation)
○ Driller (selective concolic execution)
○ VUzzer (taint analysis, data & control flow analysis)

➢ Limitations
○ High overhead
○ Not scalable
○ Unable to bypass “hard” checks

■ Checksum values
■ Crypto-hash values

4

Insight: some checks are non-critical
➢ Some checks are not intended to prevent bugs
➢ Non-Critical Checks (NCC)

○ E.g., checks on magic values, checksum, hashes

➢ Removing NCCs won’t incur erroneous bugs
➢ Removal of NCCs simplifies fuzzing

void main() {
 int fd = open(...);
 char *hdr = read_header(fd);
 if (strncmp(hdr, “ELF", 3) == 0) {
 // main program logic
 // ...
 } else {
 error();
 }
} 5

T-Fuzz: fuzzing by program transformation

➢ Fuzzer generates inputs
➢ When Fuzzer gets stuck,

Program Transformer:
○ Detects NCC candidates
○ Transforms program

➢ Repeats
➢ Crash Analyzer verifies crashes

in the original program

6

Fuzzer
(e.g. AFL)

Program
Transformer

Crash
Analyzer

Bug Reports

False Positives

Crashing
inputs

Inputs

Transformed Programs

T-Fuzz
design

Detecting NCCs (1)
➢ Precisely detecting NCCs is hard
➢ Precise approach

○ Leveraging control and data flow analysis techniques
○ Slow and unscalable

➢ Imprecise approach
○ Approximate NCCs as the checks fuzzer cannot bypass
○ May result in false positives due to imprecision

7

Detecting NCCs (2)

8

Covered Node

Uncovered Node

NCC Candidates➢ Approximate NCCs as edges connecting
covered and uncovered nodes in CFG

➢ Over approximate, may contain false positive
➢ Lightweight and simple to implement

○ Dynamic tracing

Program Transformation (1)
➢ Goal: disable NCCs
➢ Possible options

○ Source rewriting & recompilation
■ Complexity involved with mapping between binary and source code
■ Compilation results in overhead

○ Static instrumentation
■ Error prone

○ Dynamic instrumentation
■ High overhead

9

Program Transformation (2)
➢ Our approach: negate NCCs

○ Easy to implement: static binary rewriting
○ Zero runtime overhead in resulting target program
○ The CFG of program stays the same
○ Trace in transformed program maps to original program
○ Path constraints of original program can be recovered

10

start

end

A == B

True branch False branch

start

end

A != B

True branch False branch

Negated
Check

Filtering out false positives & reproducing bugs

11

Collect paths constraints
of the original program
by symbolically tracing the
transformed program with
crashing input

Path
constraints

Satisfiable?

False Positive

Generate input to
reproduce the

crash in original
program

Example 1

12

int main (){
 int x = read_input();
 int y = read_input();
 if (x > 0) {
 if (y == 0xdeadbeef)
 bug();
 }
}

Original Program

int main (){
 int x = read_input();
 int y = read_input();
 if (x > 0) {
 if (y != 0xdeadbeef)
 bug();
 }
}

Transformed Program

Negated
check

{ x > 0, y == 0xdeadbeef }

Collected path constraints SAT True BUG

un-negating

Example 2

13

Original Program

int main (){
 int i = read_input();
 if (i > 0) {
 func(i);
 }
}

void func(int i) {
 if (i <= 0) {
 bug();
 }
 //...
}

Original Program

int main (){
 int i = read_input();
 if (i > 0) {
 func(i);
 }
}

void func(int i) {
 if (i > 0) {
 bug();
 }
 //...
}

Transformed Program

Negated
check

{ i > 0, i <= 0}

Collected path constraints UN
SAT

False BUG
un-negating

Comparison with other SE based approaches (1)
➢ Pure symbolic execution, e.g., KLEE

○ Explores all possible code paths, tracking input constraints
○ Path explosion issue, especially in the presence of loops

■ Each branch doubles the number of code paths
○ Very high resource requirement
○ Theoretically beautiful, limited practical use

14

...

...

(Path1,
constraint set1)

(Path2,
constraint set2)

(Pathn,
constraint setn)

...

Comparison with other SE based approaches (2)
➢ Concolic execution, e.g., CUTE

○ Guided by concrete inputs
○ Following a single code path, collects constraints for

new code paths by flipping conditions
○ Reduced resource requirements
○ Total number of explored symbolic code paths

remains exponential

15

...

...

input

C1

Not C1

(Path1,
constraint set1)

(Path2,
constraint set2)

(Pathn,
constraint setn)

...

Comparison with other SE based approaches (3)
➢ Combining fuzzing with concolic execution (Driller)

○ Fuzzing explores code paths as much as possible
○ When fuzzing gets “stuck”, concolic execution explores

new code paths using fuzzer generated inputs
○ Limitations

■ “SE & constraints solving” slows down fuzzing
■ Not able to bypass “hard” checks

16

Fuzzer

Inputs

mutating

target
program

Crashes

SE & constraint
solving

Comparison with other SE based approaches (4)
➢ SE is decoupled from fuzzing
➢ SE only applied to detected crashes
➢ In case of “hard” checks, T-Fuzz still

detects the guarded bug, though
cannot verify it

17

T-Fuzz

Fuzzer

program

Crashes

Program
Transformation

Usage of SE in T-Fuzz

SE & constraints
solving

T-Fuzz limitation: false crashes (L1)
➢ False crashes may hinder true bug discovery

18

FILE *fp = fopen(...);
if (fp != NULL) {

// False crash
fread(fp, ...);
// ...
// true bug
bug();

}

Example: false crash hindering discovery of true bug

T-Fuzz limitation: transformation explosion (L2)
➢ Analogous to path explosion issue in symbolic execution

19

Original
program

Transformed
program

Transformed
program

Transformed
program

Transformed
program

Transformed
program

……

……

……

……

……

Transformed
program

……

……

……

T-Fuzz limitation: Crash Analyzer (1)
➢ Conflicting constraints result from checks on the same input cause FN

20

FILE *fp = fopen(...);
// injected bug in lava-m dataset
fread(fp + lava_get(123) *
 (lava_get(123) == 0x12345678), ...);

int lava_get(int bug_num) {
 if (lava_vals[bug_num] == 0x12345678) {
 printf(“triggered bug %d\n”, bug_num);
 }
 return lava_vals[bug_num];
}

Original Program

FILE *fp = fopen(...);
// injected bug in lava-m dataset
fread(fp + lava_get(123) *
 (lava_get(123) != 0x12345678), ...);

int lava_get(int bug_num) {
 if (lava_vals[bug_num] == 0x12345678) {
 printf(“triggered bug %d\n”, bug_num);
 }
 return lava_vals[bug_num];
}

Transformed Program

Negated check

{ lava_123 == 0x12345678,
lava_123 != 0x12345678 }

Collected path constraints

un-negating

UN
SAT

True BUG

T-Fuzz limitation: Crash Analyzer (2)
➢ Unable to verify non-termination (endless loop) detections

○ Tracing won’t terminate

➢ Overhead is still high
○ Size of program trace (collecting constraints)
○ Size of collected path constraints set (constraints solving)

21

Implementation
➢ Fuzzer: shellphish fuzzer (python wrapper of AFL)
➢ Program Transformer

○ angr tracer
○ radare2

➢ Crash Analyzer
○ angr

➢ 2K LOC (python) + a lot of hackery in angr

22

Evaluation
➢ DARPA CGC dataset
➢ LAVA-M dataset
➢ 4 real-world programs

23

DARPA CGC dataset
➢ Improvement over Driller/AFL: 55 (45%) / 61 (58%)
➢ T-Fuzz defeated by Driller in 10

○ 3 due to false crashes (L1)
○ 7 due to transformation explosion (L2)

24

Method # bugs

AFL 105

Driller 121

T-Fuzz 166

Driller - AFL 16

T-Fuzz - AFL 61

T-Fuzz - Driller 55

Driller - T-Fuzz 10

AFL
(105)

T-Fuzz
(166)Driller

(121)

10

6

55

LAVA-M dataset
➢ T-Fuzz performs well given favorable conditions for VUzzer and Steelix
➢ T-Fuzz outperforms VUzzer and Steelix for “hard” checks
➢ T-Fuzz defeated by Steelix due to transformation explosion in who, but still

found more bugs than VUzzer
➢ T-Fuzz found 1 unintended bug in who

25

Program Total # of bugs VUzzer Steelix T-Fuzz

base64 44 17 43 43

unique 28 27 24 26

md5sum 57 1 28 49

who 2136 50 194 95*

Real-world programs
➢ Widely used in related work
➢ T-Fuzz detected far more (verified) crashes than AFL
➢ T-Fuzz found 3 new bugs

26

Program + library AFL T-Fuzz

pngfix + libpng (1.7.0) 0 11

tiffinfo + libtiff (3.8.2) 53 124

magick + ImageMagicK (7.0.7) 0 2

pdftohtml + libpoppler (0.62.0) 0 1

Case study: CROMU_00030 (from CGC dataset)

27

void main() {
 int step = 0;
 Packet packet;
 while (1) {
 memset(packet, 0, sizeof(packet));
 if (step >= 9) {
 char name[5];
 int len = read(stdin, name, 128);
 printf("Well done, %s\n", name);
 return SUCCESS;
 }
 read(stdin, &packet, sizeof(packet));
 if(strcmp((char *)&packet, "1212") == 0) {
 return FAIL;
 }
 if (compute_checksum(&packet) != packet.checksum) {
 return FAIL;
 }
 if (handle_packet(&packet) != 0) {
 return FAIL;
 }
 step ++;
 }
}

Stack Buffer overflow bug

C1: check on magic values

C2: check on checksum

C3: authenticate user info

How the bug was found by T-Fuzz

28

CROMU_00030

CROMU_00030_0

void main() {
 int step = 0;
 Packet packet;
 while (1) {
 memset(packet, 0, sizeof(packet));
 if (step >= 9) {
 char name[5];
 int len = read(stdin, name, 128);
 printf("Well done, %s\n", name);
 return SUCCESS;
 }
 read(stdin, &packet, sizeof(packet));
 if(strcmp((char *)&packet, "1212") == 0) {
 return FAIL;
 }
 if (compute_checksum(&packet) != packet.checksum) {
 return FAIL;
 }
 if (handle_packet(&packet) != 0) {
 return FAIL;
 }
 step ++;
 }
}

CROMU_00030_6 CROMU_00030_9…... …...

Total time to find the bug: ~4h

Manually verified

Demo - T-Fuzz finding bugs in LAVA-M’s uniq

29

http://www.youtube.com/watch?v=yXa1bXbzeqY

Current status
➢ Program transformation

○ No support to transform shared libraries
○ Jump tables are not supported

■ switch … case statements, complex if … else if … statements

➢ Crash Analyzer
○ Scalability issues for large programs
○ Lack of environmental modelling (syscall, libc functions) in angr

30

Future work
➢ Improve precision of NCCs

○ Use some static analysis to, e.g., underestimate NCCs

➢ Improve mutation of target program
○ Add support for mutating jump tables
○ Add support for mutating shared libraries

➢ Improve Crash Analyzer
○ Add environmental modelling to better support real-world programs
○ Crash Analyzer

■ Reduce tracing time: eager concolic execution
■ Reduce memory consumption: keep track of only one program state
■ rewrite the core of angr using C/C++ (?)

31

Conclusion
➢ Fuzzers are limited by coverage and unable to find “deep” bugs
➢ T-Fuzz extends fuzzing by mutating both inputs and target program
➢ T-Fuzz outperforms state-of-art fuzzers

○ T-Fuzz had improvement over Driller/AFL by 45%/58%
○ T-Fuzz triggered bugs guarded by “hard” checks
○ T-Fuzz found new bugs: 1 in LAVA-M dataset and 3 in real-world programs

32

https://github.com/HexHive/T-Fuzz

https://github.com/HexHive/T-Fuzz

