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Fuzzing as a bug finding approach
➢  Fuzzing is highly effective in finding bugs (CVEs​)
➢  Developers use it as proactive defense measure: OSS-Fuzz, MSRD​
➢  Analysts use it as first step in exploit development
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Challenges for fuzzers
➢ Challenges

○ Shallow coverage
○ Hard to find “deep” bugs

➢ Root cause
○ Fuzzer-generated inputs cannot 

bypass complex sanity checks in 
the target program
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Existing approaches & their limitations
➢ Existing approaches focus on input generation

○ AFL improvements (searching for constants, corpus generation)
○ Driller (selective concolic execution)
○ VUzzer (taint analysis, data & control flow analysis)

➢ Limitations
○ High overhead
○ Not scalable
○ Unable to bypass “hard” checks

■ Checksum values
■ Crypto-hash values
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Insight: some checks are non-critical
➢ Some checks are not intended to prevent bugs
➢ Non-Critical Checks (NCC)

○ E.g., checks on magic values, checksum, hashes

➢ Removing NCCs won’t incur erroneous bugs
➢ Removal of NCCs simplifies fuzzing

void main() {
  int fd  = open(...);
  char *hdr = read_header(fd);
  if (strncmp(hdr, “ELF", 3) == 0) {
    // main program logic
    // ...
  } else {
    error();
  }
} 5



T-Fuzz: fuzzing by program transformation

➢ Fuzzer generates inputs
➢ When Fuzzer gets stuck, 

Program Transformer:
○ Detects NCC candidates
○ Transforms program

➢ Repeats
➢ Crash Analyzer verifies crashes 

in the original program 
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Detecting NCCs (1)
➢ Precisely detecting NCCs is hard
➢ Precise approach

○ Leveraging control and data flow analysis techniques
○ Slow and unscalable

➢ Imprecise approach
○ Approximate NCCs as the checks fuzzer cannot bypass
○ May result in false positives due to imprecision
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Detecting NCCs (2)
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Covered Node

Uncovered Node

NCC Candidates➢ Approximate NCCs as edges connecting 
covered and uncovered nodes in CFG

➢ Over approximate, may contain false positive
➢ Lightweight and simple to implement

○ Dynamic tracing



Program Transformation (1)
➢ Goal: disable NCCs
➢ Possible options

○ Source rewriting & recompilation
■ Complexity involved with mapping between binary and source code
■ Compilation results in overhead

○ Static instrumentation
■ Error prone

○ Dynamic instrumentation
■ High overhead
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Program Transformation (2)
➢ Our approach: negate NCCs

○ Easy to implement: static binary rewriting
○ Zero runtime overhead in resulting target program
○ The CFG of program stays the same
○ Trace in transformed program maps to original program
○ Path constraints of original program can be recovered
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Filtering out false positives & reproducing bugs
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Example 1
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int main (){
  int x = read_input();
  int y = read_input();
  if (x > 0) {
    if (y == 0xdeadbeef)
      bug();
  }
}

Original Program

int main (){
  int x = read_input();
  int y = read_input();
  if (x > 0) {
    if (y != 0xdeadbeef)
      bug();
  }
}

Transformed Program

Negated 
check

{ x > 0, y == 0xdeadbeef }

Collected path constraints SAT True BUG

un-negating



Example 2
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Original Program

int main (){
  int i = read_input(); 
  if (i > 0) {
    func(i);
  }
} 

void func(int i) {
  if (i <= 0) {
    bug();
  }
  //... 
}

Original Program

int main (){
  int i = read_input(); 
  if (i > 0) {
    func(i);
  }
} 

void func(int i) {
  if (i > 0) {
    bug();
  }
  //... 
}

Transformed Program

Negated 
check

{ i > 0, i <= 0}

Collected path constraints UN
SAT

False BUG
un-negating



Comparison with other SE based approaches (1)
➢ Pure symbolic execution, e.g., KLEE

○ Explores all possible code paths, tracking input constraints
○ Path explosion issue, especially in the presence of loops

■ Each branch doubles the number of code paths
○ Very high resource requirement
○ Theoretically beautiful, limited practical use
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Comparison with other SE based approaches (2)
➢ Concolic execution, e.g., CUTE

○ Guided by concrete inputs
○ Following a single code path, collects constraints for 

new code paths by flipping conditions
○ Reduced resource requirements
○ Total number of explored symbolic code paths 

remains exponential
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Comparison with other SE based approaches (3)
➢ Combining fuzzing with concolic execution (Driller)

○ Fuzzing explores code paths as much as possible
○ When fuzzing gets “stuck”, concolic execution explores 

new code paths using fuzzer generated inputs
○ Limitations

■ “SE & constraints solving” slows down fuzzing
■ Not able to bypass “hard” checks
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Comparison with other SE based approaches (4)
➢ SE is decoupled from fuzzing
➢ SE only applied to detected crashes
➢ In case of “hard” checks, T-Fuzz still 

detects the guarded bug, though 
cannot verify it
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T-Fuzz limitation: false crashes (L1)
➢  False crashes may hinder true bug discovery
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FILE *fp = fopen(...);
if (fp != NULL) {

// False crash
fread(fp, ...);
// ...
// true bug
bug();

}

Example: false crash hindering discovery of true bug



T-Fuzz limitation: transformation explosion (L2)
➢ Analogous to path explosion issue in symbolic execution
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T-Fuzz limitation: Crash Analyzer (1)
➢ Conflicting constraints result from checks on the same input cause FN
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FILE *fp = fopen(...);
// injected bug in lava-m dataset
fread(fp + lava_get(123) * 
      (lava_get(123) == 0x12345678), ...);

int lava_get(int bug_num) {
 if (lava_vals[bug_num] == 0x12345678) {
   printf(“triggered bug %d\n”, bug_num);
 }
 return lava_vals[bug_num];
}

Original Program

FILE *fp = fopen(...);
// injected bug in lava-m dataset
fread(fp + lava_get(123) * 
      (lava_get(123) != 0x12345678), ...);

int lava_get(int bug_num) {
 if (lava_vals[bug_num] == 0x12345678) {
   printf(“triggered bug %d\n”, bug_num);
 }
 return lava_vals[bug_num];
}

Transformed Program

Negated check

{ lava_123 == 0x12345678, 
lava_123 != 0x12345678 }

Collected path constraints

un-negating

UN
SAT

True BUG



T-Fuzz limitation: Crash Analyzer (2)
➢ Unable to verify non-termination (endless loop) detections

○ Tracing won’t terminate

➢ Overhead is still high
○ Size of program trace (collecting constraints)
○ Size of collected path constraints set (constraints solving)
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Implementation
➢ Fuzzer: shellphish fuzzer (python wrapper of AFL)
➢ Program Transformer

○ angr tracer
○ radare2

➢ Crash Analyzer
○ angr

➢ 2K LOC (python) + a lot of hackery in angr
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Evaluation
➢ DARPA CGC dataset
➢ LAVA-M dataset
➢ 4 real-world programs
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DARPA CGC dataset
➢ Improvement over Driller/AFL: 55 (45%) / 61 (58%)
➢ T-Fuzz defeated by Driller in 10

○ 3 due to false crashes (L1)
○ 7 due to transformation explosion (L2)
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Method # bugs

AFL 105

Driller 121

T-Fuzz 166

Driller - AFL 16

T-Fuzz - AFL 61

T-Fuzz - Driller 55

Driller - T-Fuzz 10

AFL 
(105)

T-Fuzz 
(166)Driller 

(121)
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LAVA-M dataset
➢ T-Fuzz performs well given favorable conditions for VUzzer and Steelix
➢ T-Fuzz outperforms VUzzer and Steelix for “hard” checks
➢ T-Fuzz defeated by Steelix due to transformation explosion in who, but still 

found more bugs than VUzzer
➢ T-Fuzz found 1 unintended bug in who
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Program Total # of bugs VUzzer Steelix T-Fuzz

base64 44 17 43 43

unique 28 27 24 26

md5sum 57 1 28 49

who 2136 50 194 95*



Real-world programs
➢ Widely used in related work
➢ T-Fuzz detected far more (verified) crashes than AFL
➢ T-Fuzz found 3 new bugs
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Program + library AFL T-Fuzz

pngfix + libpng (1.7.0) 0 11

tiffinfo + libtiff (3.8.2) 53 124

magick + ImageMagicK (7.0.7) 0 2

pdftohtml + libpoppler (0.62.0) 0 1



Case study: CROMU_00030 (from CGC dataset)
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void main() {
  int step = 0;
  Packet packet;
  while (1) {
    memset(packet, 0, sizeof(packet));
    if (step >= 9) {
  char name[5];
  int len = read(stdin, name, 128);
  printf("Well done, %s\n", name);
       return SUCCESS;
    }
    read(stdin, &packet, sizeof(packet));
    if(strcmp((char *)&packet, "1212") == 0) {
  return FAIL;
    }
    if (compute_checksum(&packet) != packet.checksum) {
  return FAIL;
    }
    if (handle_packet(&packet) != 0) {
  return FAIL;
    }
    step ++;
  }
}

Stack Buffer overflow bug

C1: check on magic values

C2: check on checksum

C3: authenticate user info



How the bug was found by T-Fuzz
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CROMU_00030

CROMU_00030_0

void main() {
  int step = 0;
  Packet packet;
  while (1) {
    memset(packet, 0, sizeof(packet));
    if (step >= 9) {
  char name[5];
  int len = read(stdin, name, 128);
  printf("Well done, %s\n", name);
       return SUCCESS;
    }
    read(stdin, &packet, sizeof(packet));
    if(strcmp((char *)&packet, "1212") == 0) {
  return FAIL;
    }
    if (compute_checksum(&packet) != packet.checksum) {
  return FAIL;
    }
    if (handle_packet(&packet) != 0) {
  return FAIL;
    }
    step ++;
  }
}

CROMU_00030_6 CROMU_00030_9…... …...

Total time to find the bug: ~4h

Manually verified



Demo - T-Fuzz finding bugs in LAVA-M’s uniq
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http://www.youtube.com/watch?v=yXa1bXbzeqY


Current status
➢ Program transformation

○ No support to transform shared libraries
○ Jump tables are not supported

■ switch … case statements, complex if … else if … statements

➢ Crash Analyzer
○ Scalability issues for large programs
○ Lack of environmental modelling (syscall, libc functions) in angr
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Future work
➢ Improve precision of NCCs

○ Use some static analysis to, e.g., underestimate NCCs

➢ Improve mutation of target program
○ Add support for mutating jump tables
○ Add support for mutating shared libraries

➢ Improve Crash Analyzer
○ Add environmental modelling to better support real-world programs
○ Crash Analyzer

■ Reduce tracing time: eager concolic execution
■ Reduce memory consumption: keep track of only one program state
■ rewrite the core of angr using C/C++ (?)
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Conclusion
➢ Fuzzers are limited by coverage and unable to find “deep” bugs
➢ T-Fuzz extends fuzzing by mutating both inputs and target program
➢ T-Fuzz outperforms state-of-art fuzzers

○ T-Fuzz had improvement over Driller/AFL by 45%/58%
○ T-Fuzz triggered bugs guarded by “hard” checks
○ T-Fuzz found new bugs: 1 in LAVA-M dataset and 3 in real-world programs
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https://github.com/HexHive/T-Fuzz

https://github.com/HexHive/T-Fuzz

