
DataShield: Configurable Data Confidentiality and Integrity
Scott A. Carr

carr27@purdue.edu
Purdue University

Mathias Payer
mathias.payer@nebewelt.net

Purdue University

ABSTRACT
Applications written in C/C++ are prone to memory corrup-
tion, which allows attackers to extract secrets or gain control
of the system. With the rise of strong control-flow hijacking
defenses, non-control data attacks have become the domi-
nant threat. As vulnerabilities like HeartBleed have shown,
such attacks are equally devastating.

Data Confidentiality and Integrity (DCI) is a low-overhead
non-control-data protection mechanism for systems software.
DCI augments the C/C++ programming languages with an-
notations, allowing the programmer to protect selected data
types. The DCI compiler and runtime system prevent illegal
reads (confidentiality) and writes (integrity) to instances of
these types. The programmer selects types that contain se-
curity critical information such as passwords, cryptographic
keys, or identification tokens. Protecting only this critical
data greatly reduces performance overhead relative to com-
plete memory safety.

Our prototype implementation of DCI, DataShield, shows
the applicability and efficiency of our approach. For SPEC
CPU2006, the performance overhead is at most 16.34%.
For our case studies, we instrumented mbedTLS, astar, and
libquantum to show that our annotation approach is prac-
tical. The overhead of our SSL/TLS server is 35.7% with
critical data structures protected at all times. Our security
evaluation shows DataShield mitigates a recently discovered
vulnerability in mbedTLS.

1. INTRODUCTION
Code written in low level languages such as C/C++ com-

prises the majority of software that modern systems run.
Programmers choose these languages for the speed and con-
trol they provide. These benefits come with a cost: protect-
ing programs against memory and type safety errors is left
to the programmer. In particular, the lack of memory and
type safety, and the resulting memory corruptions, has lead
to an unending stream of security vulnerabilities.

Preventing memory vulnerabilities in C/C++ code is well
explored, but widely adopted protection mechanisms focus
on control-flow hijack attacks, neglecting non-control-data
attacks. In a control-flow hijack attack, the attacker di-
verts the program’s intended control-flow. However, in non-
control-data attacks, the program execution follows a valid
path through the program, but the data is attacker-controlled.

Mature control-flow defenses – such as Stack Cookies [12],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02 - 06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3052983

Address Space Layout Randomization (ASLR) [44], DEP [52],
and Control-flow Integrity (CFI) [1] – are widely deployed.
Next generation control-flow protection mechanisms such as
CFI and Code-Pointer Integrity [27] are widely researched
and are being deployed in production systems. For example,
Microsoft’s Control-Flow Guard [29] and LLVM-CFI [11]
are available in production compilers. As these defenses
improve, attackers will follow the path of least resistance
and shift to non-control-data attacks, which are not pre-
vented by any of the above mechanisms. As the high-profile
HeartBleed bug showed [16], non-control-data attacks are
as harmful as control-flow hijack attacks [9, 20, 24]. In fact,
the Control-Flow Bending [8] non-control-data attack can
achieve Turing-complete computation even under CFI.

Complete memory safety mechanisms stop both control-
flow hijack attacks and non-control-data attacks, but have
not been widely adopted. CCured [35], Cyclone [26], WIT [3]
and SoftBound [34] are all different approaches that retrofit
C/C++ with some form of memory safety, but (i) impose
prohibitively high performance overhead and (ii) may run
into compatibility issues with legacy code. In general, de-
termining if a C/C++ program is memory safe is undecid-
able, so any complete protection mechanism must fall back,
at least in part, to runtime checks. This requirement puts
an intrinsic lower bound on the overhead of any complete
memory protection mechanism. For this reason, we argue
that program-wide precise memory protection imposes too
much overhead for wide adoption.

We introduce Data Confidentiality and Integrity (DCI) to
address these challenges. DCI limits the performance over-
head by tagging data as either sensitive or non-sensitive,
enforcing precise spatial and temporal safety checks only on
sensitive data. For non-sensitive data, DCI only requires
coarse bounds and imprecise temporal safety. Coarse checks
are low overhead, avoiding expensive metadata lookups. The
programmer specifies which data is fully protected and the
DCI compiler and runtime enforces the security policy. In
this way, DCI allows the programmer to control the over-
head/protection trade-off. The DCI policy is:

(i) Memory safety for sensitive data: Pointers to sensitive
objects can only be dereferenced if they point within the
bounds of the associated (valid) memory object.

(ii) Sandboxing for non-sensitive data: Pointers to non-
sensitive objects can be dereferenced if they point anywhere
except a sensitive memory object.

(iii) No data-flow between sensitive and non-sensitive data:
Explicit data-flow between sensitive memory objects and
non-sensitive memory objects is forbidden. Sensitive and
non-sensitive objects must reside in disjoint memory regions.

This policy provides spatial and temporal memory safety
for sensitive data at runtime, and ensures both confidential-
ity and integrity of the sensitive data.

Our implementation of DCI, DataShield, consists of three
key parts. First, DataShield provides a language the pro-
grammer uses to specify protection. The language is a small

http://dx.doi.org/10.1145/3052973.3052983

set of annotations that are added to existing C/C++ code.
Second, compiler instrumentation identifies the sensitive vari-
ables and associated data-flows, and rewrites the program
with additional security checks. Third, the runtime system
creates and maintains the metadata. Our contributions are:
• Definition of a new security policy we call Data Con-

fidentiality and Integrity;
• An open-source compiler-based prototype implementa-

tion of the policy called DataShield with instrumented
C/C++ standard libraries;
• Two case studies on the practicality DataShield;
• An instrumented version of an SSL/TLS library

(mbedTLS) with sensitive data protection built-in;
• A security evaluation that shows DCI mitigates

CVE-2015-5291, a recent vulnerability in mbedTLS.

2. BACKGROUND AND MOTIVATION
In the following sections we: (i) explain the relationship

between memory safety, integrity, and confidentiality, (ii)
discuss the performance overhead of memory safety, and
(iii) show that non-control-data attacks are not prevented
by existing low-overhead defense mechanisms.

2.1 Safety, Integrity, and Confidentiality
A program is memory safe if it is free from memory access

errors, including but not limited to: (i) buffer overflows, (ii)
dangling pointers, (iii) null pointer dereferences, (iv) use of
uninitialized memory, and (v) double frees [23, 50].

A spatial memory error occurs when an out of bounds
pointer (usually the result of incorrect pointer arithmetic)
is dereferenced. A temporal memory error occurs when a
pointer to uninitialized memory or to freed memory is deref-
erenced. We will refer to spatial memory safety and tempo-
ral memory safety as simply “memory safety”.

Data integrity and confidentiality are ensured by enforcing
memory safety for both reads and writes through pointers.
An integrity violation occurs when an attacker uses a pointer
to write outside the intended memory object, while a confi-
dentiality violation occurs when the attacker uses a pointer
to read outside the intended memory object.

2.2 Memory Safety Overhead
The absence of memory errors is, in general, undecidable

statically for C/C++. Any mechanism guaranteeing memory
safety must (at least partially) fall back on dynamic checks
and maintain metadata. While several mechanisms have
been proposed with varying efficiency, they all require a run-
time component that imposes some overhead [30]. Table 1
shows the average overhead of four existing complete safety
mechanisms (as reported by the authors). The purpose of
the table is not to compare the techniques with each other,
but to show there is significant overhead for each mecha-
nism. Straightforward comparison is impossible, since they
use different benchmarks, computer architectures, software
versions, and operating systems.

Protection Benchmarks Avg. Overhead (%)
CCured SPECINT95 81.75
CCured Olden 44.33
Cyclone N/A 38.25
SoftBound SPEC2000, Olden 67

Table 1: Performance Overhead of Existing Memory
Safety Mechanisms (as reported by the authors).

2.3 Non-control-data Attacks
To date, security researchers and attackers have primarily

focused on control-flow hijack attacks. Such attacks were
effective and simple to execute before protection mecha-
nisms were in place. Stack Cookies [13], ASLR [44], and
DEP [52] enforce code integrity and give probabilistic guar-
antees against code reuse attacks. The adoption of these
defenses mitigated simple attacks, e.g., stack smashing or
shell code injection. Attackers responded by moving to code
reuse attacks, such as return-oriented programming [6, 36].
Following the same pattern, when CFI (or CPI) mecha-
nisms [25, 27, 37, 39, 40, 45, 51, 53] become widely deployed,
attackers will shift from control-flow hijack attacks to the
next available form of attack, i.e., non-control-data attacks.

Non-control-data attacks [8, 20, 24] are harder to detect
because only the data differs between benign and malicious
executions. For example, to exploit the HeartBleed bug,
the attacker sends a malicious request. For a benign re-
quest, the server echoes back the message. However, the at-
tacker’s malicious request causes a buffer overflow, because
the value of the length field in her request is longer than the
content [16]. The result is that the server sends back unin-
tended additional data. The server’s response includes the
original message plus the data past the end of the message
buffer. The exploit is devastating when the data after the
buffer is sensitive, like a private encryption key.

While HeartBleed is an example of a confidentiality vio-
lation, non-control-data attacks can also result in integrity
violations. For example, overwriting the user ID variable
with the value of the administrator’s user ID is one way to
perform a privilege escalation attack. To prevent all non-
control-data attacks we need both confidentiality and in-
tegrity of sensitive data. Neither of these attacks are caught
by any of the mentioned defense mechanisms. Since non-
control-data attacks can slip past these defenses and com-
plete memory safety is too costly, we need new tools targeted
at providing data protection with low overhead.

3. THREAT MODEL
Our threat model assumes that the attacker can exploit

the original benign program to perform arbitrary reads and
writes through attacker-controllable memory errors. We as-
sume the system is protected from code injection (or mod-
ification) attacks by DEP [52]. We assume that another
protection mechanism is in place in the system to prevent
control-flow hijacking. Side-channel attacks that leak in-
formation from the sensitive region are out of scope. The
operating system, our compiler, and our instrumentation are
in the trusted computing base (TCB).

4. DCI DESIGN
The key idea behind DCI is that we need protection against

non-control-data attacks, but not all data in a program is
equally important in terms of security. Relaxing the pro-
tection on the non-sensitive memory objects allows us to
reduce the overhead of our protection mechanism relative
to complete memory safety. Specifically, the non-sensitve
checks are more efficient, and no metadata is tracked for
non-sensitive objects. DCI ensures that despite the presence
of memory vulnerabilities, the confidentiality and integrity
of sensitive data is preserved.

Determining the subset of sensitive data is a pivotal deci-

sion. The current DCI implementation uses a programmer
specification to describe which data is sensitive. While it
would seem ideal to instead use a sophisticated static anal-
ysis to automatically infer sensitive data, the programmer
intuitively has domain knowledge that is not available to a
compiler or a static analyzer.

DCI separates the memory into two regions, a precisely
protected region for sensitive data and a coarsely protected
region for non-sensitive data. The mechanism enforces this
separation and forbids any pointers from the non-sensitive
region to the sensitive region. The DCI policy requires sen-
sitive data to be precisely bounds checked in the same man-
ner as complete memory safety. However, the policy re-
laxes the requirement for non-sensitive data. Pointers to
non-sensitive data can be dereferenced if they point any-
where except a sensitive memory object. Such coarse bounds
checking for non-sensitive data lowers overhead. Our policy
requires coarse bounds checking (sandboxing) non-sensitive
data as otherwise, an attacker could access sensitive data
through a corrupted non-sensitive pointer. Thus, we must
have a check on every pointer dereference, regardless of whether
that pointer points to sensitive or non-sensitive data [18].

Finally, data-flow between variables in different regions is
forbidden. This policy applies to primitive variables, point-
ers, and contents of aggregate types. This rule means that
an object itself (struct, array, etc.) and all its sub-objects
(members, elements, etc.) have the same sensitivity. This
property is enforced at compile time by separating all vari-
ables into one of two disjoint sets – the sensitive set or the
non-sensitive set.

Any attempt by the attacker to modify the sensitive data
with a non-sensitive pointer, as well as a buffer overflow or
use-after-free inside the sensitive region, causes our system
to abort the program. An attacker may still modify sand-
boxed data through non-sensitive pointers, as the security
policy does not protect such data.

4.1 Determining the Sensitive Types
DCI requires the programmer to specify which data is

sensitive. A recent study showed that annotation burden is
a primary factor affecting developers use of contracts [46],
which are similar to our annotations. A survey of 21 open
source projects that use contracts found that over 33% of
program elements (classes or functions) were annotated [17].
For large code bases, annotating functions individually does
not scale. To reduce annotation burden, we design our pro-
tection specification to be type-based. When the program-
mer annotates a type, all instances of that type are sensitive.
Annotating a type in effect annotates every function that
uses that type as a parameter and every local or global vari-
able of that type. This way, a small number of annotations
give a specification for the entire program.

For example, to mark all instances of struct circle
in the entire program as sensitive, the programmer would
mark any instance with our provided annotation:

__attribute__ ((annotate (" sensitive ")))
struct circle c;

This has the effect of enabling sensitive protection to:

1. instances of struct circle and their contents;
2. instances of other types that contain struct circle

as a member.

4.1.1 Implicit Sensitivity
A key design decision is how to handle interactions be-

tween non-sensitive and sensitive variables. The compiler
can reject the program (and display an error message to the
programmer) or it could automatically make the variable
implicitly sensitive. To minimize annotation burden Data-
Shield defaults to the second option.

Implicit sensitivity potentially leads to more variables be-
ing sensitive than the programmer expects, but greatly re-
duces the number of required annotations. To mitigate the
problem of the programmer not knowing exactly what vari-
ables are sensitive, the compiler can report a list of sensi-
tive variables and types to which protection was propagated.
The programmer can then either iteratively modify the pro-
gram or the sensitivity specification.

4.2 Sensitivity Rules
This section formalizes the sensitivity rules. To prevent

data-flow between sensitive and non-sensitive variables, the
first rule forbids direct interaction between variables of dif-
ferent sets.

1. x [op] y is only allowed when
sensitivity(x) = sensitivity(y)

where [op] can be any binary operator. Unary operators do
not change the sensitivity of their operand.

Constants take on the protection of their other operand:

2. sensitivity(x [op] c) ← sensitivity(x)

where c is any constant.
These rules are sufficient for primitive values, but there

are additional rules for pointers:

3. For pointers p and q, if q is based on p
sensitivity(q) ← sensitivity(p)

4. For pointer p and its pointee *p,
sensitivity(p) ← sensitivity(*p)

Here “based on” means that q is the result of pointer arith-
metic on p. The additional pointer rules mean that the
contents of a struct have the same sensitivity as a pointer
to the struct and array elements have the same sensitivity
as the array itself.

The final policy rules are:

5. Sensitive pointers can only be dereferenced within the
bounds of a valid sensitive object.

6. Non-sensitive pointers cannot be dereferenced within
the bounds of a sensitive object.

Rule 5 prevents overflows between sensitive objects, and
as side effect prevents overflows to non-sensitive variables as
well (since they are out of bounds of the original sensitive
object). It also prevents dereferencing pointers to sensitive
objects when they point to unallocated memory (temporal
errors). Rule 6 prevents overflows from non-sensitive objects
to sensitive objects.

4.3 Enforcement
At runtime, DCI divides memory into two regions, asso-

ciates metadata with each sensitive pointer in the program,
and performs a check before each pointer dereference. A
conceptual memory layout is shown in Figure 1.

Non-sensitive Data

Sensitive Data

Bounds & Temporal Metadata

Non-sensitive Region
Coarse bounds

No temporal safety

Sensitive Region
Precise bounds
Temporal Safety

Regions Boundary

High Memory

Low Memory

Figure 1: DataShield’s runtime memory layout for
sensitive and non-sensitive data. The sensitive re-
gion has a strict security policy that leads to instru-
mentation overhead, and the non-sensitive region
has a relaxed security policy with minimal overhead.

The non-sensitive region simply contains all the non-sensitive
data. The sensitive region holds both sensitive data and the
metadata for the sensitive pointers.

Whenever a new sensitive memory object is allocated, the
bounds of that object and a temporal check key are recorded
as metadata. When a new non-sensitive object is allocated,
no metadata is recorded, because non-sensitive pointers have
the implicit bounds of anywhere except a sensitive object
and no temporal safety. Sensitive and non-sensitive objects
are allocated using a region-specific allocator. Pointers in
sensitive memory are restricted to point within the bounds
of their intended memory object by checking their value
against the associated metadata, while non-sensitive point-
ers may point anywhere in the non-sensitive region. The
relaxed policy for non-sensitive pointers leads to more effi-
cient checks and less metadata.

5. DCI IMPLEMENTATION
DataShield implements DCI by extending the LLVM com-

piler. At a high-level, the compile-time portion of Data-
Shield consists of collecting sensitive types, identifying sen-
sitive variables and inserting new instructions to enforce the
DCI policy. The new instructions create metadata, and per-
form sensitive or non-sensitive bounds checks. The runtime
initializes the metadata data structure and implements the
checks and region-based allocators. The compiler portion is
implemented as an LLVM pass in 4,500 lines of C++ code.
The DataShield runtime is 1,000 lines of C code.

5.1 Identifying Annotated Types
Most C/C++ compilers, including GCC and clang/LLVM,

already have an annotation facility built in, requiring only
minor modifications to support the type annotations that
DataShield requires.

Our first pass scans all the code in a module, recording the
annotated types as sensitive. When the programmer adds
an annotation to her code, it appears in the LLVM IR as
metadata. Identifying the set of sensitive types is as simple
as parsing the metadata.

Global1 Global2 Param1 Param2

Global1->foo Global1->bar Param1->buz Param2->baz

Sensitive UnkownKey: Discovered Undiscovered

Global1 Global2 Param1 Param2

Global1->foo Global1->bar Param1->buz Param2->baz

Global1 Global2 Param1 Param2

Global1->foo Global1->bar Param1->buz Param2->baz

2

3

1

Figure 2: A sensitivity analysis example. In itera-
tion 1, only the sensitivity of globals and of function
parameters are known. Then, the analysis applies
abstract interpretation over the function body’s in-
structions, discovering new relationships and adding
variables into the sensitive set. It concludes when
a fixed point is reached in iteration 3. Arrows indi-
cate that connected boxes must be in the same set
according to the DCI policy rules.

5.2 Identifying Sensitive Variables
Once our implementation has identified the sensitive types,

the compiler locates variables of those types. Declared vari-
ables of the sensitive types form the roots of the data-flow
graph. The compiler explores every execution path adding
new variables to the sensitive set.

The data-flow analysis that finds all the explicitly and
implicitly sensitive variables is inter-procedural and context-
sensitive. It is a fixed-point analysis where we iteratively add
more variables to the sensitive set as shown in Figure 2.

At the start of the analysis, only global variables and func-
tion arguments of the sensitive types are in the sensitive set.
Variables that have data-flow with other variables in the
sensitive set are unioned into the sensitive set. In our for-
malization, lowercase letters denote variables and uppercase
letters denote types. We use the notation x ∈ Sens to de-
note the variable x is in the sensitive set, and the notation
sensType(T) = true to denote that any of the following are
true:

• T is annotated as sensitive;
• pointers to T are annotated as sensitive;
• T is a member of another type U that is annotated as

sensitive type;
• T has a member of another type U that is annotated

as sensitive type.

Note that the definition is recursive. For instance assume
(i) a program has types T , U , and V , and (ii) V is a member
of U and U is a member of T . Then if sensType() is true
for any of the types, then it is true for all three.

Pointers to primitive types (e.g., void*, int*, char*,
or float*) are handled specially. We assume that the
programmer does not intend to make all instances of, e.g.,
char* sensitive. If the programmer annotates a type which

T x = LoadInst(T* a)

if sensType(T) ∨ a ∈ Sens ∨ x ∈ Sens

then Sens ∪ {x, a}
StoreInst(T x, T* y)

if sensType(T) ∨ x ∈ Sens ∨ y ∈ Sens

then Sens ∪ {x, y}
T x = BitcastInst(U a)

if sensType(T) ∨ sensType(U) ∨ x ∈ Sens ∨ a ∈ Sens

then Sens ∪ {x, a}

Figure 3: Abstract interpretation transfer function
for finding implicitly sensitive variables. Other in-
structions simply propagate sensitivity.

has a char* member, only char* based on the (sensitive)
parent type are explicitly sensitive. Instances of char*
that are not members of sensitive types are considered non-
sensitive initially, but can become implicitly sensitive when
our analysis discovers data-flow with other sensitive vari-
ables. This approach reduces the amount of primitive types
(and broadly data at runtime) that need to be sensitive.

The analysis proceeds by abstract interpretation over the
function’s LLVM IR instructions, applying the transfer func-
tion in Figure 3. For brevity, we show only a subset of inter-
esting instructions. The abstract domain for a given variable
is whether it belongs to the sensitive set or not. Once a vari-
able belongs to the sensitive set it can never leave the set.
The rest of the instructions simply union the sensitivity of
their operands. The one exception is LLVM’s CallInst, as
calling a function with mixed sensitivity arguments is legal
under our policy. For instance, it could be that the mixed
sensitivity arguments do not interact with each other inside
the function body. Alternatively, if the mixed sensitivity
arguments do interact, the non-sensitive arguments will be
promoted to implicitly sensitive when the callee function is
analyzed. The BitCastInst instruction propagates sensi-
tivity in both directions and never removes sensitivity. If
a non-sensitive pointer is cast to sensitive, or a sensitive
pointer is cast to non-sensitive, both the original and cast
pointers are considered sensitive.

When a callee function with sensitive arguments is discov-
ered by the analysis, we clone a new version of that function
which will be reanalyzed and rewritten with the appropriate
sensitivity. At the original call site, the call to the original
function is replaced with a call to the newly cloned func-
tion. The per-call site cloning is crucial because the same
function may be called in different contexts with different
argument sensitivities. For example, let there be a function
with the signature: “void foo(void* p);”. It is valid to
call foo with the parameter p as any pointer type, and more
relevantly to us, with a sensitive or non-sensitive pointer.

When the analysis concludes, each variable is sensitive
or non-sensitive. The analysis yields a conservative over-
approximation of the sensitive set which, by design, never
leads to a security violation. Putting new variables into the
sensitive set only enables precise bounds checking for more
variables (at potentially increased performance overhead).

6. RUNTIME
At runtime, DataShield separates the sensitive and non-

sensitive memory objects by creating two separate memory
regions. The non-sensitive region resides in the lower mem-
ory addresses up to a fixed address, which is the highest
possible non-sensitive address. DataShield uses 232 − 1 as
the end of the non-sensitive region, but this is a configurable
parameter. The sensitive memory region resides in the re-
maining memory addresses above the non-sensitive region.

While the boundary between the regions is fixed, data
within the regions need not be stored at any fixed address.
This means that our approach remains compatible with ran-
domization techniques (e.g., ASLR).

Sensitive and non-sensitive heap- and stack-allocated vari-
ables are moved to the corresponding region. For the current
implementation, the non-sensitive region contains a dedi-
cated heap and stack, but there is no sensitive stack. All
sensitive stack allocations are rewritten as sensitive heap
allocations, so sensitive pointers are only stored in the sen-
sitive heap or in registers. There is nothing inherent in the
DCI policy that requires this implementation choice.

In addition to the two memory regions, DataShield needs
a data structure for storing bounds and temporal metadata
for sensitive memory objects. We store this metadata dis-
joint from the actual sensitive data to preserve the memory
layout. This follows the approach of SoftBound [34], and al-
lows system calls that take sensitive variables to work with-
out modification. A detailed diagram of the memory layout
and pointer-to-bounds metadata mapping is shown in Fig-
ure 4. Note that the bounds for the non-sensitive objects in
Figure 4 are conceptual and so are the absolute addresses
shown. Non-sensitive object bounds are not actually stored
in the metadata table, they are hard coded in the coarse
bounds check instructions. For a thorough discussion of the
merits of disjoint metadata please see Nagarakatte et al. [30].
To bounds check each sensitive pointer, we need to store the
base and last addresses, meaning we must save 16 bytes for
each sensitive pointer. Note from the figure that bounds
are created and checked for sub-objects if the type of the
sub-object is a sensitive pointer. Sensitive Pointer A and
Sensitive Pointer B have their own bounds in this example.

Metadata

Non-sensitive
data

Sensitive	
object

0x300

0x300:	[0x200,	0x220)	

0x200

index:	[base,	end)	

Sensitive	
Pointer	A

0x0:	[0x0,	0xff)	

0xff
0xff:	[0x0,	0xff)	

.

.

.

0x210:	[0x310,	0x320)	

0x200

0x220
Sensitive	Pointer	B 0x210

0x0

Figure 4: Detailed memory layout, showing the
mapping between bounds and sensitive pointers us-
ing the pointer’s address.

Though unavailable in the current prototype, temporal
metadata can be stored in the same metadata table. A dis-
cussion on temporal safety is in Section 8.

The runtime must protect the integrity of the metadata
table. If the attacker could modify it, she could cause mem-
ory errors in the sensitive region. For the current proto-
type, the metadata table is stored inside the sensitive region.
Keeping metadata in the sensitive region allows the coarse
bounds check we apply to non-sensitive pointers to protect
both the sensitive data and the metadata table.

6.1 Sensitive Globals and Constants
Normally, all constants and global data are loaded to-

gether by the program loader. However, to enforce the same
security policy for global data as for heap and stack data,
we use a linker script to map the sensitive and non-sensitive
globals into their respective regions. After the sensitivity
analysis finishes, sensitive globals and constants are marked
with custom section names which are recognized by our
linker script. Any non-sensitive globals are mapped to an
address below the sensitive/non-sensitive region boundary.
Sensitive globals and constants are instead mapped to an
address above the boundary, and metadata is created for
them in the same manner as any other sensitive object.

6.2 Instruction Rewriting
The instruction rewriting step occurs after the sensitive

variable analysis when the sensitivity of every variable is
known. Before every pointer dereference, the compiler in-
serts the appropriate bounds check depending on the sensi-
tivity of the pointer.

Allocations are replaced with calls to our region-based
allocators (based on dlmalloc1) that ensure the allocated
memory is in the correct sensitive or non-sensitive region.

6.2.1 Rewriting for Non-Sensitive Variables
We have implemented three types of coarse-grained bounds

checks. DataShield inserts one of the three following coarse
bounds check types, depending on the target processor and
configuration, before every non-sensitive pointer dereference.
All implementations enforce strong isolation. Considering
recent advances in breaking information hiding [18, 42], our
prototype avoids information hiding.

Software Mask. The software mask check has the widest
compatibility. It only requires the target processor to have
an and instruction. To mask a non-sensitive pointer, an and
instruction with a pre-determined value is inserted before
the pointer dereference. The mask clears the higher bits
of the pointer, preventing the resulting value from pointing
into the sensitive region before it is dereferenced.

Intel MPX Bounds Check. Intel MPX adds hard-
ware support for bounds checking, including 4 bounds reg-
isters (bnd0–bnd3) and 7 new instructions. At program
startup, our runtime initializes the bnd0 register with the
bounds of the non-sensitive region. The compiler inserts a
bndcu instruction prior to every non-sensitive pointer deref-
erence. The bndcu instruction checks the given pointer
value against the upper bound stored in the given bounds
register. In our case, it checks the pointer against the bounds
of the non-sensitive region. By utilizing the 4 bounds reg-
isters, DataShield can support up to 4 non-sensitive regions

1http://g.oswego.edu/dl/html/malloc.html

(e.g., to sandbox different untrusted components) and the
non-sensitive regions can reside anywhere in memory.

Address Override Prefix. An address override pre-
fix before an instruction tells the processor to treat address
operands as 32-bit values. An instruction with the address
override prefix cannot access the sensitive region (since the
sensitive region is above 232 in this configuration). This
bounds check is supported by any x86-64 processor. On
x86-32 processors, previous work used segmentation regis-
ters [27], but segments are no longer enforced in x86-64.

6.2.2 Rewriting for Sensitive Variables
Bounds information is created when sensitive memory ob-

jects are allocated. The base and last addresses of the al-
located object are recorded in the metadata table. Bounds
metadata is propagated to other pointers on assignment. For
example, extending our struct circle example above:

struct circle *c1 , *c2;

// creates bounds information :
// base = address returned by malloc
// last = base + sizeof (struct circle) *10 -1
c1 = malloc (sizeof (struct circle) *10) ;

// c2 gets assigned the bounds information
// (base and last) from c1
c2 = c1;

Prior to every occurrence of a sensitive pointer derefer-
ence, the compiler inserts a precise bounds check. The pre-
cise bounds check consists of a metadata table look up based
on the address of the pointer, and a comparison of the sensi-
tive pointer value with the upper and lower bound retrieved
from the table. The coarse bounds enforcement for non-
sensitive pointers is much faster than the precise bounds
check for sensitive pointers because it consists of at most a
single instruction (compared to several instructions and a
memory access for the precise bounds check).

6.3 Standard Library Instrumentation
For complete protection, we must instrument both the ap-

plication itself and the libraries the application uses. Data-
Shield provides instrumented versions of musl2 for the C
standard library, and libc++3 for the C++ standard library.

For compatibility, DataShield supports shared libraries,
as they are used more commonly in practice than statically
linked libraries. The issue with shared libraries is that they
are compiled separately and ahead of time, without knowl-
edge of the applications the library will be linked against.
Since we cannot know all settings the library will be used
in, we also cannot know if data-flow in an application will
cause a particular library variable to be sensitive. We have
two options to address this problem.

Option 1: Two Versions of Each Library. We com-
pile two shared versions of each standard library, one that
treats all data as sensitive and another that treats all data as
non-sensitive. During compilation of the application, each
call to the library is directed to the appropriate version,
depending on the sensitivity of the arguments. Note that
merging shared state between the two compiled library in-
stances becomes challenging.

Option 2: Drop-in Replacement. We compile a drop-

2https://www.musl-libc.org
3http://www.libcxx.llvm.org

in replacement for the default system standard library, i.e.,
a single shared library that works with programs compiled
with and without DataShield’s instrumentation. To achieve
this, we relocate all library objects to the non-sensitive re-
gion and do not insert any checks in the library. Internal
checks in the library would fail when linked against applica-
tions not compiled with DataShield.

In our evaluation, we use Option 2. Benchmark programs
typically make few standard library calls, so checks in li-
braries should not have a measurable effect on overhead.

Option 2 makes all library data non-sensitive, so appli-
cation code that deals with non-sensitive data can directly
use the library. However, with Option 2, the application
cannot pass sensitive data to, or read sensitive data from,
the library. Instead, we created wrappers for the standard
library functions that propagate metadata (e.g., memcpy),
and return pointers to library allocated memory objects
(e.g., getenv.) The functions that return pointers to li-
brary allocated objects return pointers to safe region copies.
Copies are made during program startup, so there is no op-
portunity for the attacker to corrupt the sensitive copy. Op-
tion 2 offers the added security of checks in the application,
while allowing our libraries to be drop-in replacements.

7. PERFORMANCE EVALUATION
To evaluate the efficiency of our implementation proto-

type, we consider the major contributors to overhead. The
first major source of overhead is coarsely bounds checking
the non-sensitive object set. The second source is enforcing
precise bounds on the sensitive set. There are other sources
of overhead, such as initializing and allocating internal data
structures, but these happen only once at program start up
and are negligible for long lived programs.

A key feature of DCI is that the programmer decides
which objects are in the sensitive set. This decision should
have an effect on the measured overhead, so our evaluation
must account for this decision. This presents a challenge
because we cannot evaluate all possible ways to divide the
program data into two non-interacting sets. Instead, we per-
form three experiments, that taken together give an overall
picture of DataShield’s overhead.

First, we evaluate microbenchmarks designed to vary the
split between sensitive and non-sensitive data to quantify the
ratio’s effect on total measured overhead. We compare Data-
Shield’s overhead on these microbenchmarks to SoftBound
+ CETS, a complete memory safety mechanism, to show
the reduced overhead of relaxed protection for non-sensitive
data.

Second, we present three case studies where we assumed
the role of the programmer. We examined the case study
source codes and decided what data should be sensitive. We
do not argue that our division of the program data into
sensitive/non-sensitive is correct, optimal, or best in an ob-
jective sense. In our case studies, we annotated the im-
portant data types in the programs, leading to most of the
data being sensitive. For our case study programs, we chose
libquantum and astar from SPEC CPU2006, and mbedTLS,
a TLS/SSL library.

Third, we evaluate the overhead’s lower bound, i.e., the
sensitive set is empty. This evaluation is an approximation
of the case where only a small amount of data in a program
is sensitive and it is accessed very infrequently. We evaluate
all SPEC CPU2006 C/C++ programs in this configuration.

0.1 0.3 0.5 0.7 0.9
sensitive data ratio

0

50

100

150

200

p
e
rc

e
n
t

o
v
e
rh

e
a
d

insertion sort

DataShield

SoftBound

SoftBound+CETS

0.1 0.3 0.5 0.7 0.9
sensitive data ratio

10

0

10

20

30

40

50

60
find max

Figure 5: Performance overhead measured on two
microbenchmarks when varying the proportion of
sensitive to non-sensitive data. More sensitive data
leads to higher overhead for DataShield but not for
SoftBound + CETS.

For all our evaluations, our platform was Ubuntu 14.04
LTS with an Intel Core i7-6600 3.4 GHz processor and 16
GB of RAM. The baseline compiler was clang 3.9 and all pro-
grams were compiled with Link Time Optimization (LTO)
and O3 optimizations.

During our evaluation we discovered that our region-based
allocator introduced performance speed-ups of up to 20%
due to a massive reduction in page faults. We adjusted
for this difference by replacing the default allocator with
our region-based allocator when measuring baseline perfor-
mance. Note that we did not modify the allocator used by
SoftBound + CETS.

7.1 Microbenchmarks
To quantify the relationship between proportion of sensi-

tive data and overhead, we created two microbenchmarks.
In the benchmarks, we create a sensitive and a non-sensitive
array, and the size of arrays are varied to control the sensitive
to non-sensitive data ratio. We used the software masking
implementation of coarse bounds checking for comparison
against SoftBound + CETS, because the publicly available
implementation uses software bounds checking.

In the first microbenchmark, insertion-sort, we sort
arrays using insertion sort. This exaggerates the effect of the
difference in array sizes because insertion sort’s complexity
is quadratic. For example, if the non-sensitive array has
size N and the sensitive array has size 2N , then we will
execute four times as many sensitive pointer dereferences as
non-sensitive.

The second microbenchmark is find-max, a simple im-
plementation of a linear scan of an array of objects to find
the element with the largest value for a particular integer
field. We control the ratio of sensitive to non-sensitive ob-
jects by varying the sizes of the two arrays. For example, if
the sensitive array has twice as many elements as the non-
sensitive array, we know that there should be roughly twice
as many sensitive pointer dereferences as non-sensitive – be-
cause the find-max algorithm is linear in the size of the
array.

The results of this experiment are shown in Figure 5.

The overhead of SoftBound + CETS is mostly constant
across our experiments, as we would expect. However, as
the amount of sensitive data increases, the overhead of Data-
Shield increases towards the SoftBound + CETS overhead.
In the figure, SoftBound + CETS includes both spatial and
temporal protection, but SoftBound is spatial protection
only. All configurations of DataShield, even protecting up
to 90% of the data, are faster than SoftBound. Beyond
the overhead savings of enforcing memory safety on only
a subset of the data, we attribute the additional perfor-
mance improvements compared to SoftBound to, in part,
local optimizations that reduce the number of times bounds
are loaded and inlined versions of the checks. We also ob-
served that the region-base allocators can have a large effect
on heap locality.

From these experiments, we conclude that non-sensitive
data does in fact incur lower overhead using our prototype
versus sensitive data. Therefore, the total program overhead
is a function of the amount of sensitive data in the program.

7.2 Case Study: libquantum
For our first case study, we evaluated libquantum from

the SPEC CPU2006 benchmark suite with a subset of the
program’s data protected. We decided to protect the quan-
tum_reg_struct type as it is one of the main types used
by libquantum. To protect this type, we simply added our
annotation to the header file that defines the type, i.e.,
“qureg.h.” With precise bounds checking enabled for quan-
tum_reg_struct and its sub-objects, we measured an over-
head of 27.21% on the ref SPEC benchmark inputs. Unfor-
tunately, we cannot compare our overhead to SoftBound as
the current SoftBound version does not compile libquantum.

The purpose of the case study is not only to measure
the performance overhead, but also to evaluate the diffi-
culty of annotation. For this case study, adding just one
annotation for quantum_reg_struct protected nearly ev-
ery pointer in the program sensitive because that data type
is used so commonly. We created a dynamic profiler to mea-
sure how many dereferenced pointers were sensitive versus
non-sensitive. We measured only two non-sensitive pointer
dereferences in this configuration. Note that benchmarks
are geared towards a single purpose with all data heavily
connected. This behavior is therefore expected.

7.3 Case Study: mbed TLS
For our second case study, we applied DataShield to

mbedTLS, a SSL/TLS library implemented in about 30, 000
lines of C code. There are two main purposes for this case
study:

• To show that the type-based annotation approach is
scalable to large programs;
• To measure the overhead a system would incur when

using a protected SSL/TLS library in practice.

We annotated the type ssl_context, which is the most
important type used by the library users. Most functions
that are visible to clients take a ssl_context as a pa-
rameter. The context has fields of many different types:
primitives, pointers, arrays, and function pointers. We re-
compiled the mbedTLS library with the context type anno-
tated and built the included programs ssl_client2 and
ssl_server2 against our protected library.

With only the type ssl_context annotated, we success-
fully protect all cryptography related memory objects in the

client and server. In an example run of the server, 52 non-
sensitive pointers were dereferenced compared to over 1.6
million sensitive pointer dereferences. Note that in a produc-
tion web server, it would have many more non-cryptographic
functionalities, so in the other areas of the code there would
be more non-sensitive pointer dereferences – which incur
lower overhead.

Despite having a high percentage of sensitive objects, we
measured the fairly low overhead of 35.7% when exchanging
one million messages between the client and server. This is
partly due to not incurring instrumentation overhead when
performing and waiting for IO, as the client and server com-
municate with each other over a socket. In practice the
SSL/TLS client and server would be running on different
machines connected across some network, so the time wait-
ing for IO might be even greater.

In conducting this case study we found the type anno-
tations to be straightforward to use, but we encountered a
difficulty with function pointers with sensitive arguments.
When the pointed-to function takes an explicitly sensitive
type as a parameter there is no problem, and the analysis
rewrites the pointed-to function correctly. However, if the
caller function invokes a callee function through a pointer
with an implicitly sensitive argument, the analysis can fail
to match the callee and caller correctly and consider the
argument as non-sensitive inside the callee. This situation
always leads to a false positive policy violation in the callee,
which luckily cannot lead to a security vulnerability but
aborts the program. To address this problem, we added
an annotation that marks the sensitivity of function pointer
call sites and address-taken functions. We annotated 50
address-taken functions total for both the ssl_client2
and ssl_server2. Most function pointer invocations do
not need annotations, because the analysis usually deter-
mines sensitivity correctly if the caller uses the pointer at
all – versus allocating a new object, not accessing it, and
passing a pointer to the object to the callee.

7.4 Case Study: astar
For our third case study, we use astar, which is a SPEC

CPU2006 benchmark. It is a path finding library imple-
mented in 4,285 lines of C++. In this case study, we evalu-
ated the effect of relaxing one of the policy rules on the num-
ber of bounds checks and performance. Specifically, we re-
moved rule 1 from Section 4.2 for primitive types only. This
relaxation allows sensitive primitive values (int, float,
etc.) to leak information when they are added or subtracted
with non-sensitive primitives, but leaves full protection in
place for pointers. We refer to this related policy as “sepa-
ration mode.” We annotated the type statinfot and used
the “rivers.cfg” input configuration.

With the full DCI policy enforced the measured overhead
was 96%. In separation mode, the overhead was reduced
to 9.12% and the number of sensitive bounds checks was re-
duced from over 100∗109 to 160∗103. Our results show that
the full policy is quite strict and results in a large portion
of the program data being sensitive. However, if we relax
the policy, as in separation mode, we can further control the
security versus overhead trade-off.

7.5 SPEC CPU2006 Evaluation
To further evaluate the overhead of DataShield, we re-

compiled each of the SPEC CPU2006 C/C++ benchmarks

p
er

lb
en

ch
b
zi

p
2

g
cc

m
cf

g
ob

m
k

h
m

m
er

sj
en

g
lib

q
u
an

tu
m

h
2
6
4
re

f
om

n
et

p
p

as
ta

r
xa

la
n
cb

m
k

m
ilc

n
am

d
d
ea

lII
so

p
le

x
p
ov

ra
y

lb
m

sp
h
in

x3
G

eo
M

ea
n

5

0

5

10

15

20

25

o
v
e
rh

e
a
d
 (

%
)

mask

mpx

prefix

Figure 6: Performance overhead on SPEC CPU2006
for three non-sensitive protection options: masking,
Intel MPX, and address override prefix.

with our instrumentation. The SPEC benchmarks are not
ideal candidates for benchmarking security mechanisms like
DataShield. Unlike browsers, webservers, and cryptographic
libraries, the SPEC benchmarks are simple programs with
few types and none of the benchmarks deal with sensitive
data. We include them since they are the de-facto standard
for performance measurement.

We did not annotate these benchmarks for this experi-
ment. Even though this experiment is run with an empty
sensitive set, the bounds of the non-sensitive region are still
enforced. This experiment is effectively measuring the over-
head of the parts of a program that do not interact with
sensitive data, independent of what sensitive data may exist
in the program.

With SPEC CPU2006, we evaluated the three coarse-
bounds check options, software mask, Intel MPX, and ad-
dress override prefix. Moreover, to isolate the components of
DataShield’s non-sensitive overhead, we measured the over-
head of software masking in integrity-only and confidentiality-
only modes.

7.5.1 Comparison of Coarse Bounds Check Imple-
mentations

Depending on the target processor, the programmer may
choose among three coarse bounds check implementations,
namely software mask, Intel MPX, and address override pre-
fix. Figure 6 shows the overhead of the three options on the
SPEC CPU2006 C/C++ benchmarks, using the median of
ten runs of each individual benchmark.

For the software mask coarse bounds check, the geomet-
ric mean across the benchmarks was 8.14%, and the differ-
ence between individual benchmarks is quite large (1.82% to
16.34%). The width of this range is due to some benchmarks
having many pointer operations while others having much
fewer. For MPX bounds checks and address override prefix
the geometric means are 5.56% and 0.0013% respectively.

As expected, the address override prefix implementation
had the lowest overhead – too small to measure reliably.
The main reason for this is that the address override prefix
bounds check does not introduce any additional instructions
to the program, it just prefixes existing instructions. The

p
er

lb
en

ch
b
zi

p
2

g
cc

m
cf

g
ob

m
k

h
m

m
er

sj
en

g
lib

q
u
an

tu
m

h
2
6
4
re

f
om

n
et

p
p

as
ta

r
xa

la
n
cb

m
k

m
ilc

n
am

d
d
ea

lII
so

p
le

x
p
ov

ra
y

lb
m

sp
h
in

x3
G

eo
M

ea
n

10

5

0

5

10

15

20

o
v
e
rh

e
a
d
 (

%
)

integ.

conf.

both

Figure 7: Performance overhead on SPEC CPU2006
isolated by protection type. Integrity-only pro-
tects writes, confidentiality-only protects reads, and
“both” protects reads and writes.

drawbacks are that this is unique to the x86-64 instruction
set, and that the prefix applies to a fixed region (0− 232).

To summarize, using a prefix offers best performance but
constrains the location, maximum size of the region, and the
ISA. Intel MPX has lower overhead than masking and can
give fine-grained control over the location and the size of
the region. Masking has the widest compatibility but is the
slowest option.

7.5.2 Integrity and Confidentiality Overhead
We have evaluated the execution time overhead of Data-

Shield in three different configurations: (i) integrity-only,
(ii) confidentiality-only, and (iii) both confidentiality and
integrity. These different configurations protect the confi-
dentiality, integrity, or both of the sensitive region.

In integrity-only mode, only stores to pointed to memory
locations are protected. In confidentiality-only mode, only
loads from pointed to memory locations are protected. In
the third mode, all loads and stores are protected.

Integrity-only is clearly useful on its own. Many mecha-
nisms enforce only integrity including CFI, CPI, and WIT [1,
3, 27]. Conversely, confidentiality without integrity is brittle
because the attacker can simply overwrite the metadata. We
present the overhead of confidentiality-only mode to show
the different components of the overhead and for comparison
to integrity-only mechanisms. Of course, the enforcement of
both integrity and confidentiality is the strongest protection
and incurs the highest overhead.

Figure 7 measures the overheads for the different modes
on different runs, so integrity-only and confidentiality-only
options do not sum up exactly to the combined integrity and
confidentiality option due to measurement variation. One
interesting aspect of this result is that confidentiality is more
costly than integrity, as there are more memory reads than
writes in the SPEC CPU2006 benchmarks.

7.6 Security Evaluation
To evaluate the security of our approach, we looked for

Common Vulnerabilities and Exposures (CVEs) in our case
study programs. Guido Vranken discovered a remote heap
corruption vulnerability for mbedTLS in October 2015 [54]

(CVE-2015-5291). The root cause of the vulnerability is a
buffer overflow. Specifically, a malicious SSL/TLS server
can create a session ticket that overflows the client’s buffer
when the session ticket is reused by the client, corrupting the
client’s heap. We recompiled mbedTLS 2.1.1 (an older ver-
sion, before the vulnerability was patched) both with and
without protection, and ran the malicious server against
our clients. As expected, without DataShield protection the
client’s heap was corrupted, but with protection the attack
caused a bounds violation and termination of the program.
From this evaluation, we conclude that DCI can potentially
mitigate vulnerabilities in production software.

Qualitatively, DataShield provides deterministic protec-
tion for every sensitive variable in the sensitive set because
there is a check on every pointer deference.

7.7 Future Work
In future work, we plan to formalize and improve our

sensitivity analysis. As discussed in Section 5.2 we over-
approximate the sensitive set. This leads to higher overhead
because the security checks on sensitive pointers are more
expensive. Therefore, a more precise analysis would result
in lower overhead.

Despite not presenting a complete formal proof, we do
have some evidence for correctness. If a program runs suc-
cessfully with instrumentation (which is the case in all our
experiments) then we know that every check succeeded. There-
fore, the static determination of sensitivity matched the true
sensitivity of the pointer at runtime every time a pointer
was dereferenced during program execution. This argument,
however, does not provide conclusions about the correctness
of non-exercised code paths.

We also plan to investigate using Intel MPX to enforce
the bounds for both sensitive and non-sensitive pointers at
runtime. We would need to change our metadata layout to
allow Intel MPX’s bounds look up instructions to access it.

8. LIMITATIONS
Our DataShield prototype does not support bounds or

temporal checks of variadic arguments (a limitation shared
with related work, e.g., SoftBound [34]). This is an en-
gineering issue, because for non-variadic functions we use
the function signature to match the function arguments be-
tween the caller and callee. However, the variadic function
may retrieve the variadic arguments in arbitrarily compli-
cated ways. A straight-forward solution to this problem
requires adding an argument to the variadic function pro-
totypes and dynamically reading this new argument when
va arg is called to get the variadic arguments. This new
argument would specify the number of arguments and the
bounds and temporal metadata for each argument at the
specific call site. A similar approach was proposed (but
not implemented) in SoftBound [34]. In contrast, it is com-
pletely safe to pass non-sensitive pointers to variadic func-
tions. We consider all non-sensitive pointers to have the
same metadata, so we side-step the problem of matching up
arguments to metadata across the caller/callee boundary.

Temporal metadata checking and tracking is not enforced
in our current prototype. We could extend our prototype
with temporal safety in the same manner that CETS [33]
added temporal safety to SoftBound [34]. Following this
plan, adding full temporal safety is an engineering effort.

The prototype does provide some temporal protection in

that even if a pointer points to deallocated memory, it is
impossible for a new object of the wrong sensitivity to be
allocated in the pointed-to location. Concretely, given some
sensitive pointer P , if free(P) is called, the memory pointed
to by P will be available to be reallocated. The most harm-
ful type of temporal error occurs when a new object of a
different type is allocated to where P points. However,
DataShield mitigates this by guaranteeing that only sensi-
tive objects will be allocated to where P points. The attack
surface is limited by requiring a temporal error to exist in
the portion of the program that uses sensitive data. Or
in the case where there is only one sensitive type, Data-
Shield provides region-based temporal safety analogously to
DieHard(er) [5, 41] and Cling [2].

9. RELATED WORK
There are many proposed techniques that aim to add

memory safety to C or a C dialect. Approaches that aug-
ment the C language include CCured [35] and Cyclone [26].
Both approaches are compiler-based and combine static anal-
ysis with runtime checks. DataShield is inspired by CCured
and Cyclone in that it tries to make the porting process as
easy as possible. There is a massive amount of legacy C
code for which porting to a new language is too costly.

SoftBound [34] provides complete spatial memory safety
but works on unmodified C code. CETS [33] is an extension
to SoftBound that provides temporal safety. The main draw-
back of SoftBound + CETS, and complete memory safety
in general, is overhead. Code-Pointer Integrity (CPI) [27]
is a specialization of memory safety that only protects code
pointers. This ensures control-flow integrity while reducing
overhead relative to complete memory protection. DCI ex-
tends CPI’s partial protection to other types of data. Key
differences between CPI and DCI are:

1. CPI protects code pointers only (e.g., function point-
ers, return addresses, or indirect jumps) while DCI
protects any type of data, not just pointer data;

2. DCI allows the programmer to specify what is pro-
tected whereas CPI only focuses on code pointers;

3. DCI protects the content of objects along with pointer
values whereas CPI protects pointer values only;

4. DCI enforces both integrity and confidentiality where
CPI only enforces integrity.

Yarra [47] is similar in concept to the DCI policy but
Yarra focuses on programming language theory while our
work targets a practical implementation. Yarra has two
modes, whole program and targeted. Whole program mode
is complete memory safety with metadata for each mem-
ory address. The runtime of gzip from SPEC INT2000 in
whole program mode is 6x the baseline. In targeted mode,
Yarra uses page protection to lock its protected data when-
ever unprotected functions are executing. This approach
was inspired by Samurai [43] and has great compatibility
because it can guarantee the integrity of the protected data
even when running completely unknown and untrusted code.
The drawback is that the overhead of updating the page
permission is far higher than our implementation. Yarra’s
execution time of gzip in targeted mode is 2x the baseline.

Kenali [49] enforces the integrity of kernel security checks
with a form of data-flow integrity. It is similar to DCI in
that it attempts to infer the sensitive data from a set of

sensitive data root variables. For Kenali, root variables are
the error codes returned by kernel security checks but in DCI
the roots can be any data type. The protection enforcement
is stronger in DataShield than in Kenali. Kenali relies on
information hiding to protect its stack and overflows between
sensitive objects are not prevented by Kenali. We believe
DCI offers a more flexible approach in that the programmer
can control which data is sensitive and it works on a variety
of programs whereas Kenali targets only the Linux kernel.

Shreds [10] is a new compartmentalization mechanism for
protecting sensitive data. Unlike Shreds which treats all
memory inside the shred as sensitive, DCI supports code
that mixes sensitive and non-sensitive data. Shreds provides
no protection against overflows between sensitive objects.
If there is a memory error anywhere within the shred, the
attacker can corrupt any memory inside the shred.

Several approaches attempt to reduce the memory over-
head of complete memory safety [30]. Hardware support [14,
31, 32] has been shown to reduce overhead. ASAP [55] is a
tool that allows the programmer to specify the amount of
overhead she is willing to accept then only inserts checks up
to that budget. DCI also aims to reduce the performance
overhead but never relaxes the policy on sensitive data.
SAFECode [15] used static analysis to eliminate checks and
its allocation pools are similar to DCI if we consider the sen-
sitivity to be part of a variable’s type. METAlloc reduces
the cost of metadata look up [22]. PAricheck [57] reduces
the cost of pointer arithmetic checks by labeling memory
objects and checking if the result points to an object with
the same label. Similar approaches that are memory allo-
cator based include Cling, DieHard(er), and Baggy Bounds
Checking [2, 4, 5, 41].

The inspiration for DataShield comes from the abundance
of work on Control-Flow Integrity [1, 7, 25, 27, 37, 39, 45,
53]. CFI mechanisms are becoming robust and practical,
but they do not address non-control-data attacks. Chen et
al. [9] argued that non-control-data attacks pose a signifi-
cant and realistic threat. DataShield’s protection scheme is
similar to the implementation of Monitor Integrity Protec-
tion (MIP) [38] in that both enforce separated regions. The
monitors in MIP are analogous to the sensitive data in DCI.
However, the main distinction is DataShield enforces both
confidentiality and integrity. Other similar isolation mecha-
nisms include PittSFIeld [28] and Native Client [56]. Recent
work has called into question the security of CFI. Control-
flow Bending [8], Control-flow Jujutsu [19], Counterfeit Ob-
ject Oriented Programming [48], and Out Of Control [21]
showed there are multiple attack vectors to bypass CFI.

10. CONCLUSION
With control-flow protection mechanisms maturing and

transitioning to practice, attackers will shift to data-only at-
tacks. Unfortunately, non-control-data attacks are equally
devastating as control-flow hijack attacks and we must ad-
dress this threat. However, existing mechanisms either ex-
hibit prohibitive overhead or cannot detect data-only at-
tacks. To address this issue, we have proposed a new secu-
rity policy called Data Confidentiality and Integrity (DCI)
that selectively protects sensitive data.

We have designed DCI with the security/overhead trade-
off in mind. Precise bounds and temporal checking on all
memory objects in the program imposes prohibitively high
overhead, but allowing the programmer to specify a subset of

sensitive data to fully protect mitigates this issue. We have
measured significantly reduced overhead, relative to com-
plete memory safety, on the SPEC CPU2006 benchmarks,
our microbenchmarks, and case studies. DataShield’s strong
protection is evidenced by our security evaluation which
showed that it mitigates vulnerabilities in mbedTLS, a pro-
duction quality SSL/TLS library.

11. ACKNOWLEDGMENTS
This work was sponsored, in part, by NSF grants number

CNS-1464155, CNS-1513783, and CNS-1657711 and a gift
from Intel. The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, ei-
ther expressed or implied, of any of the above organizations
or any person connected with them.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow Integrity. CCS 2005.

[2] P. Akritidis. Cling: A Memory Allocator to Mitigate
Dangling Pointers. USENIX Security 2010.

[3] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and
M. Castro. Preventing Memory Error Exploits with
WIT. In S&P 2008.

[4] P. Akritidis, M. Costa, M. Castro, and S. Hand.
Baggy Bounds Checking: An Efficient and Backwards-
Compatible Defense Against Out-of-Bounds Errors. In
USENIX Security 2009.

[5] E. D. Berger and B. G. Zorn. DieHard: Probabilistic
Memory Safety for Unsafe Languages. PLDI 2006.

[6] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-
oriented programming: a new class of code-reuse at-
tack. In ASIACCS ’11.

[7] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz,
S. Brunthaler, and M. Payer. Control-Flow Integrity:
Protection, Security, and Performance. In CSUR, 2017.

[8] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R.
Gross. Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity. In USENIX Security 2015.

[9] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.
Non-control-data Attacks Are Realistic Threats. SSYM
2005.

[10] Y. Chen, S. Reymondjohnson, Z. sun, and L. Lu.
Shreds: Fine-grained Execution Units with Private
Memory. In S&P 2016.

[11] P. Collingbourne. LLVM — Control Flow
Integrity, 2015. http://clang.llvm.org/docs/
ControlFlowIntegrity.html.

[12] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
StackGuard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In USENIX Security
1998.

[13] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
StackGuard: Automatic Adaptive Detection and Pre-
vention of Buffer-overflow Attacks. SSYM 1998.

[14] J. Devietti, C. Blundell, M. M. K. Martin, and
S. Zdancewic. Hardbound: Architectural Support for
Spatial Safety of the C Programming Language. ASP-
LOS XIII (2008).

[15] D. Dhurjati, S. Kowshik, and V. Adve. SAFECode:

http://clang.llvm.org/docs/ControlFlowIntegrity.html
http://clang.llvm.org/docs/ControlFlowIntegrity.html

Enforcing Alias Analysis for Weakly Typed Languages.
PLDI 2006.

[16] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman,
M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey,
and J. A. Halderman. The Matter of Heartbleed. In
IMC 2014.

[17] H.-C. Estler, C. Furia, M. Nordio, M. Piccioni, and
B. Meyer. Contracts in Practice. In FM 2014: Formal
Methods.

[18] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar,
T. Tang, H. Shrobe, S. Sidiroglou-Douskos, M. Rinard,
and H. Okhravi. Missing the Point: On the Effective-
ness of Code Pointer Integrity. In S&P 2015.

[19] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Ri-
nard, H. Okhravi, and S. Sidiroglou-Douskos. Control
Jujutsu: On the Weaknesses of Fine-Grained Control
Flow Integrity. In CCS 2015.

[20] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Ri-
nard, H. Okhravi, and S. Sidiroglou-Douskos. Control
Jujutsu: On the Weaknesses of fine-grained Control
Flow Integrity. 2015.

[21] E. Goktas, E. Athanasopoulos, H. Bos, and G. Por-
tokalidis. Out Of Control: Overcoming Control-Flow
Integrity. In S&P 2014.

[22] I. Haller, E. van der Kouwe, C. Giuffrida, and H. Bos.
METAlloc: Efficient and Comprehensive Metadata
Management for Software Security Hardening. EuroSec
2006.

[23] M. Hicks. What is memory safety. http://www.pl-
enthusiast.net/2014/07/21/memory-safety/.

[24] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena,
and Z. Liang. Data-Oriented Programming: On the
Expressiveness of Non-control Data Attacks. In 2016
IEEE Symposium on Security and Privacy (SP), pages
969–986, May 2016.

[25] D. Jang, Z. Tatlock, and S. Lerner. SAFEDISPATCH:
Securing C++ virtual calls from memory corruption
attacks. In NDSS 2014.

[26] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A Safe Dialect of
C. ATEC 2002.

[27] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song. Code-Pointer Integrity. In OSDI
2014.

[28] S. McCamant and G. Morrisett. Evaluating SFI for a
CISC Architecture. In USENIX Security 2006.

[29] Microsoft Corporation. Control Flow Guard (Win-
dows). https://msdn.microsoft.com/en-us/library/
windows/desktop/mt637065(v=vs.85).aspx, 2016.

[30] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
Everything You Want to Know About Pointer-Based
Checking. In SNAPL 2015.

[31] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
Watchdog: Hardware for Safe and Secure Manual Mem-
ory Management and Full Memory Safety. ISCA 2012.

[32] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
WatchdogLite: Hardware-Accelerated Compiler-Based
Pointer Checking. CGO 2014.

[33] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. CETS: Compiler Enforced Temporal
Safety for C. ISMM 2010.

[34] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. SoftBound: Highly Compatible and
Complete Spatial Memory Safety for C. PLDI 2009.

[35] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-safe Retrofitting of Legacy

Software. ACM Trans. Program. Lang. Syst.

[36] Nergal. The advanced return-into-lib(c) exploits.
Phrack, 11(58):http://phrack.com/issues.html?issue=
67&id=8, Nov. 2007.

[37] B. Niu and G. Tan. Modular Control-flow Integrity.
PLDI 2014.

[38] B. Niu and G. Tan. Monitor Integrity Protection with
Space Efficiency and Separate Compilation. CCS 2013.

[39] B. Niu and G. Tan. Per-Input Control-Flow Integrity.
CCS 2015.

[40] B. Niu and G. Tan. RockJIT: Securing Just-In-Time
Compilation Using Modular Control-Flow Integrity.
CCS 2014.

[41] G. Novark and E. D. Berger. DieHarder: Securing the
Heap. CCS 2010.

[42] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and
C. Giuffrida. Poking Holes in Information Hiding. In
USENIX Security 2016).

[43] K. Pattabiraman, V. Grover, and B. G. Zorn. Samurai:
Protecting Critical Data in Unsafe Languages. Eurosys
2008.

[44] PaX-Team. PaX ASLR. http://pax.grsecurity.net/
docs/aslr.txt, 2003.

[45] M. Payer, A. Barresi, and T. R. Gross. Fine-Grained
Control-Flow Integrity Through Binary Hardening. In
DIMVA 2015.

[46] T. W. Schiller, K. Donohue, F. Coward, and M. D.
Ernst. Case Studies and Tools for Contract Specifica-
tions. ICSE 2014.

[47] C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker,
and B. Zorn. Modular Protections against Non-Control
Data Attacks. In CSF 2011.

[48] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T. Holz. Counterfeit Object-oriented Pro-
gramming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications. In S&P 2015.

[49] C. Song, B. Lee, K. Lu, W. R. Harris, T. Kim, and
W. Lee. Enforcing Kernel Security Invariants with Data
Flow Integrity. In NDSS 2016.

[50] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eter-
nal War in Memory. S&P 2013.

[51] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,

Ú. Erlingsson, L. Lozano, and G. Pike. Enforcing
Forward-Edge Control-Flow Integrity in GCC & LLVM.
In USENIX Security 2014.

[52] A. van de Ven and I. Molnar. Exec Shield.
https://www.redhat.com/f/pdf/rhel/WHP0006US
Execshield.pdf, 2004.

[53] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras,
L. Sambuc, A. Slowinska, H. Bos, and C. Giuffrida.
Practical Context-Sensitive CFI. CCS 2015.

[54] G. Vranken. CVE-2015-5291: remote heap corruption
in ARM mbed TLS / PolarSSL, October 2015.

[55] J. Wagner, V. Kuznetsov, G. Candea, and J. Kinder.
High System-Code Security with Low Overhead. In
S&P 2015.

[56] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
Client: A Sandbox for Portable, Untrusted x86 Native
Code. In S&P 2009.

[57] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar,
F. Piessens, and W. Joosen. PAriCheck: An Efficient
Pointer Arithmetic Checker for C Programs. ASIACCS
2010.

https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
http://phrack.com/issues.html?issue=67&id=8
http://phrack.com/issues.html?issue=67&id=8
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

	Introduction
	Background and Motivation
	Safety, Integrity, and Confidentiality
	Memory Safety Overhead
	Non-control-data Attacks

	Threat Model
	DCI Design
	Determining the Sensitive Types
	Implicit Sensitivity

	Sensitivity Rules
	Enforcement

	DCI Implementation
	Identifying Annotated Types
	Identifying Sensitive Variables

	Runtime
	Sensitive Globals and Constants
	Instruction Rewriting
	Rewriting for Non-Sensitive Variables
	Rewriting for Sensitive Variables

	Standard Library Instrumentation

	Performance Evaluation
	Microbenchmarks
	Case Study: libquantum
	Case Study: mbed TLS
	Case Study: astar
	SPEC CPU2006 Evaluation
	Comparison of Coarse Bounds Check Implementations
	Integrity and Confidentiality Overhead

	Security Evaluation
	Future Work

	Limitations
	Related Work
	Conclusion
	Acknowledgments

