
TypeSan: Practical Type Confusion Detection

Istvan Haller∗†
istvan.haller@gmail.com

Yuseok Jeon‡
jeon41@purdue.edu

Hui Peng‡
peng124@purdue.edu

Mathias Payer‡
mathias.payer@nebelwelt.net

Cristiano Giuffrida∗†
giuffrida@cs.vu.nl

Herbert Bos∗†
herbertb@few.vu.nl

Erik van der Kouwe∗†
vdkouwe@cs.vu.nl

ABSTRACT
The low-level C++ programming language is ubiquitously
used for its modularity and performance. Typecasting is
a fundamental concept in C++ (and object-oriented pro-
gramming in general) to convert a pointer from one object
type into another. However, downcasting (converting a base
class pointer to a derived class pointer) has critical security
implications due to potentially different object memory lay-
outs. Due to missing type safety in C++, a downcasted
pointer can violate a programmer’s intended pointer seman-
tics, allowing an attacker to corrupt the underlying memory
in a type-unsafe fashion. This vulnerability class is receiving
increasing attention and is known as type confusion (or bad-
casting). Several existing approaches detect different forms
of type confusion, but these solutions are severely limited
due to both high run-time performance overhead and low
detection coverage.

This paper presents TypeSan, a practical type-confusion
detector which provides both low run-time overhead and
high detection coverage. Despite improving the coverage
of state-of-the-art techniques, TypeSan significantly reduces
the type-confusion detection overhead compared to other
solutions. TypeSan relies on an efficient per-object meta-
data storage service based on a compact memory shadowing
scheme. Our scheme treats all the memory objects (i.e.,
globals, stack, heap) uniformly to eliminate extra checks on
the fast path and relies on a variable compression ratio to
minimize run-time performance and memory overhead. Our
experimental results confirm that TypeSan is practical, even
when explicitly checking almost all the relevant typecasts in
a given C++ program. Compared to the state of the art,
TypeSan yields orders of magnitude higher coverage at 4–
10 times lower performance overhead on SPEC and 2 times
on Firefox. As a result, our solution offers superior protec-

*Vrije Universiteit Amsterdam
�Amsterdam Department of Informatics
�Purdue University

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978405

tion and is suitable for deployment in production software.
Moreover, our highly efficient metadata storage back-end is
potentially useful for other defenses that require memory
object tracking.

CCS Concepts
�Security and privacy → Systems security; Software
and application security;

Keywords
Type safety; Typecasting; Type confusion; Downcasting

1. INTRODUCTION
Type confusion bugs are emerging as one of the most im-

portant attack vectors to compromise C++ applications.
C++ is popular in large software projects that require both
the modularity of object-oriented programming and the high
efficiency offered by low-level access to memory and system
intrinsics. Examples of large C++ programs are Google
Chrome, large parts of Microsoft Windows and Firefox, and
the Oracle Java Virtual Machine. Unfortunately, C++ en-
forces neither type nor memory safety. This lack of safety
leads to type confusion vulnerabilities that can be abused to
attack certain programs. Type confusion bugs are an inter-
esting mix between lack of type safety and lack of memory
safety. Generally, type confusion arises when the program
interprets an object of one type as an object of a different
type due to unsafe typecasting—leading to reinterpretation
of memory areas in different contexts. For instance, it is not
uncommon for a program to cast an instance of a parent class
to a descendant class, even though this is not safe if the par-
ent class lacks some of the fields or virtual functions of the
descendant class. When the program subsequently uses the
fields or functions of the descendant class that do not exist
for the given object, it may use data, say, as a regular field in
one context and as a virtual function table (vtable) pointer
in another. Exploitable type confusion bugs have been found
in a wide range of software products, such as Adobe Flash
(CVE-2015-3077), Microsoft Internet Explorer (CVE-2015-
6184), PHP (CVE-2016-3185), and Google Chrome (CVE-
2013-0912). This paper shows how to detect type confusion
with higher detection coverage and better performance than
existing solutions.

TypeSan: always-on type checking Current defenses
against type confusion [20, 17] are impractical for production
systems, because they are too slow, suffer from low coverage,

http://dx.doi.org/10.1145/2976749.2978405

Checker xalancbmk soplex omnetpp dealII
CaVer 24 thousand 0 0 0
TypeSan 254 mln 209 thousand 2.0 bln 3.6 bln

Table 1: Coverage achieved by the type checkers on

SPEC. The numbers represent the number of downcasts

verified by each of these systems while executing the

reference workloads. The CaVer numbers are from the

original paper to ensure a fair comparison.

and/or only support non-polymorphic classes. The greatest
challenge in building an always-on type checker is the need
for per-object metadata tracking which quickly becomes a
bottleneck if the program allocates, frees, casts, and uses
objects at high frequency (e.g., on the stack).

To address the high overhead and the low coverage of ex-
isting solutions, we present TypeSan, an explicit type check-
ing mechanism that uses LLVM-based instrumentation to
enforce explicit type checks. Compared to previous work,
TypeSan provides extended coverage and massively reduced
performance overhead. Our back-end uses a highly efficient
metadata storage service (based on a shadowing scheme with
a variable compression ratio) to look up types from pointers.
This limits the amount of data written for large allocations
(such as arrays of objects) while at the same time supporting
efficient and scalable lookups, requiring only 3 memory reads
to look up a type. We envision this new type of metadata
storage to be also useful for other sanitizers, e.g., to verify
memory safety, and we plan to explore further applications
in future work.

We primarily envision TypeSan as an always-on solution,
making explicit type checks practical for commodity soft-
ware. Used in attack prevention mode, TypeSan-hardened
binaries are shipped to end users and terminate the pro-
gram on bad casts, thereby preventing zero-day type con-
fusion exploits. Combined with liveness reports for modern
software (like the Google Chrome and Mozilla Firefox crash
reporters), such a deployment signals the developers about
potentially missing type checks. In addition, TypeSan can
be used in software testing where TypeSan identifies po-
tential bad casting in the source code. In relaxed mode,
TypeSan simply logs all bad casts to scan for underlying
vulnerabilities, e.g., when running a test suite.

We have implemented a prototype of TypeSan for Linux
on top of LLVM 3.9. Our prototype implementation is com-
patible with large source code bases. We have evaluated
TypeSan with the SPEC CPU2006 C++ programs and the
Firefox browser. Compared to CaVer [17], the current state-
of-the-art type confusion detector, we decrease overhead by a
factor 3–6 for the SPEC benchmarks they reported on while
simultaneously increasing the number of typecasts covered
by checks by several orders of magnitude (see Table 1 and
Table 2 for more details).

Contributions We make the following contributions:

• A design for high-performance, high-coverage typecast
verification on legacy C++ code that is 3–6 times faster
than the state-of-the-art detector with lower memory
overhead and orders of magnitude more typecasts.

• A thorough evaluation that shows how our design de-
livers both nearly complete coverage and performance
that is suitable for production usage.

Checker xalancbmk soplex
CaVer 29.6% 20.0%
TypeSan 7.1% 1.8%

Table 2: Performance overhead achieved by the type

checkers on SPEC. The CaVer numbers are taken from

the original paper to ensure a fair comparison. The com-

parison only uses the applications CaVer has been eval-

uated on by its authors.

• An automatically generated test suite for typecasting
verification to ensure that all different combinations of
C++ types are properly handled.

• An open-source implementation of our TypeSan de-
sign, available at https://github.com/vusec/typesan.

2. BACKGROUND
In this section, we first explain typecasting in C++ and

how doing so incorrectly can lead to vulnerabilities. After-
wards, we discuss existing defenses against type confusion.

2.1 Type confusion
Object-oriented programming languages such as C++ al-

low object pointers to be converted from one type into an-
other type, for example by treating an instance of a derived
class as if it were an instance of one of its ancestor classes.
Doing so allows code to be reused more easily and is valid
because the data layout is such that an object from a de-
rived class contains the fields of its parent classes at the same
relative offsets from each other.

In our discussion on the safety of type conversions (or
typecasts), we will use the following terminology: the run-
time type refers to the type of the constructor used to create
the object, the source type is the type of the pointer that is
converted, and the target type is the type of the pointer after
the type conversion. Since the program may treat objects
as if they are instances of their ancestor types, an object
pointer should always refer to an object with a run-time type
that is either equal to or a descendant of the pointer type.
Therefore, a type conversion is always permissible when the
target type is an ancestor of the source type. A compiler
can verify such casts statically, because if the source type is
a descendant of the target type it implies that the run-time
type is also a descendant. We refer to this type of conversion
as an upcast.

If, on the other hand, the target type is a descendant of the
source type, the conversion may or may not be permissible
depending on whether the run-time type is either equal to or
a descendant of the target type. This is impossible to verify
in the general case at compile time because the run-time type
is not known to the compiler, due to inter-procedural/inter-
component data flows. We refer to this type of conversion
as a downcast. Downcasts require run-time verification to
ensure type safety. Incorrect downcasts may allow attackers
to exploit differences in the memory layout or semantics of
the fields between the target type and run-time type.

The C++ programming language permits both upcasts
and downcasts and allows the programmer to specify whether
downcasts should be checked at run time. Specifically, the
language provides three fundamental types of casts: rein-

terpret_cast, dynamic_cast, and static_cast. Dynamic
casts are enforced at run time with an explicit type check

https://github.com/vusec/typesan

and are therefore a safe but expensive way to ensure type
safety. Static casts on the other hand only verify whether
the conversion could be a valid upcast or downcast based
on the source and target types. This lack of an online check
can easily lead to type confusion when the underlying type
observed at run time differs from the expected type in the
source code.

As an example, in V8Clipboard in Chrome 26.0.1410.64,
we find the following static cast:

static_cast<HTMLImageElement*>(node)->cachedImage()

Here, the program explicitly casts an image node to an
HTMLImageElement without properly checking that it is of
the right type. Unfortunately, node could be an SVG im-
age, which is of a sibling class and has a much smaller
vtable than HTMLImageElement. Note that the program im-
mediately calls cachedImage() on the invalid object which
leads to a virtual function call that erroneously interprets
the memory adjacent to the SVG image’s vtable as code
pointers.

If the program would check all static casts dynamically,
we would not run into the type confusion problem (except
for explicitly forced“problems” through reinterpreted casts).
However, casting is such a common operation that the over-
head of checking all static casts dynamically is significant
and therefore, C++ allows the programmer to choose an
explicit run-time cast only where “needed” (according to the
programmer).

For completeness, we mention that the last form of cast-
ing, reinterpret_cast, forces a reinterpretation of a mem-
ory area into a different type. It allows a programmer to
explicitly break underlying type assumptions.

2.2 Defenses against type confusion
In recent years, several projects have tried to address the

type confusion problem. There are two main types of ap-
proaches: those based on vtable pointers embedded in the
objects and those based on disjoint metadata. Solutions
based on vtable pointers have the advantage that they do
not need to track active objects but they have the fundamen-
tal limitation that they cannot support non-polymorphic
classes, which do not have vtables, without breaking binary
compatibility.

Examples of vtable-based solutions are UBSan [20] and
Clang Control-Flow Integrity [4] (CFI). UBSan instruments
static casts to execute an explicit run-time check, effectively
turning them into dynamic casts. UBSan requires manual
blacklisting to prevent failure on non-polymorphic classes.
Unfortunately, the existing type check infrastructure that
is available in C++ compilers is inherently slow (as it was
designed under the assumption that only few dynamic checks
would be executed with the majority of checks being static).
This is another reason why type-safety solutions did not see
wide adoption. Therefore, UBSan is intended as a testing
tool and not as an always-on solution due to its prohibitive
overhead. Clang CFI is designed to be faster but has not
published performance numbers. Moreover, like all solutions
in this group, it cannot support non-polymorphic classes.

CaVer [17], on the other hand, uses disjoint metadata to
support non-polymorphic classes without blacklisting. Un-
fortunately, the overhead is still prohibitively high due to
inefficient metadata tracking (especially on the stack) and
slower checks, reaching up to 100% for some browser bench-
marks. Because CaVer cannot rely on vtables (present only

Checker Poly Non-poly No blacklist Tracking Threads
UBSan X X
Clang CFI X X X
CaVer X X X X limited
TypeSan X X X X X

Table 3: High-level feature overview of checkers.

Checker stack global new/new[] malloc family
CaVer NO PARTIAL X NO
TypeSan X X X X

Table 4: Allocation types tracked by checkers, see
Section 5.1 for a detailed discussion.

in polymorphic objects), it must track all live objects. In
particular, CaVer uses red-black trees to track stack-allocated
objects and a direct mapping scheme based on a custom
memory allocator for heap-based objects. As a consequence,
it has to determine the correct memory region for each pointer
to be checked and it cannot handle stack objects shared be-
tween threads even if proper synchronization is used in the
application. In addition, as shown in Section 9.2, CaVer has
poor object allocation coverage in practice, ultimately lead-
ing to reduced type-confusion detection coverage. For ex-
ample, CaVer reports only 24k verified casts on xalancbmk
and none on all other SPEC CPU2006 C++ benchmarks,
while we show that four benchmarks actually have a large
amount of relevant casts with their total numbers is in the
billions. As such, TypeSan is the first solution that provides
efficient and comprehensive protection against type confu-
sion attacks in the field, protecting users from vulnerabilities
not found during testing.

In this paper we introduce TypeSan, a generic solution for
typecast verification based on object tracking, that supports
all types of classes with no need for blacklisting. Moreover,
we cover a very large percentage of all relevant casts at an
acceptable overhead. Table 3 gives a high-level comparison
of the typecast verification solutions presented here. UBSan
and Clang CFI are restricted to polymorphic types, with
UBSan requiring further blacklisting to handle certain code
bases. CaVer and TypeSan also support non-polymorphic
types, but this comes at the cost of needing to track the
type for each object. CaVer further comes with the limita-
tion that threads cannot share stack objects safely even with
proper synchronization. Table 3 and Table 4 show which al-
location types are tracked in practice by tracking solutions.
See Section 5.1 for a more in-depth discussion of the various
allocation types. CaVer officially supports stack and global
data, but missed such bad casts in our coverage tests (see
Section 9.2).

3. THREAT MODEL
We assume that the attacker can exploit any type confu-

sion vulnerability but is unable to perform arbitrary memory
writes otherwise. Our type safety defense mechanism exclu-
sively focuses on type confusion. Other types of vulnerabil-
ities such as integer overflows or memory safety vulnerabili-
ties are out of scope and we assume that orthogonal defense
mechanisms protect against such vulnerabilities. Our de-
fense mechanism tolerates arbitrary reads as we do not rely
on secret information that is hidden from the attacker.

4. OVERVIEW
TypeSan is an extension to the Clang/LLVM compiler [15]

that detects invalid static_casts (i.e., all instances in the
program where an object is cast into a different type without
using an explicit run-time check through dynamic_cast or an
explicit override through reinterpret_cast) in legacy C++
programs. Upon detection of an invalid cast, the program is
terminated, optionally reporting the cause of the bad type-
cast. TypeSan is a compiler-based solution and any C/C++
source code can be hardened, without modification, by re-
compiling it with our modified clang++ compiler with the
-fsanitize=type option and linking against the tcmalloc
memory allocator [7] using the -ltcmalloc linker flag. As
we show in Section 9, TypeSan has reasonable performance
for usage in production software.

Figure 1 presents an overview of TypeSan. The instru-
mentation layer consists of hooks inserted by the compiler
to monitor object allocations and potentially unsafe casts,
as well as a static library containing the implementations of
those hooks. To perform its task, this layer makes use of two
services. The type management service encodes type infor-
mation and performs the actual typecast verification. It in-
cludes type information for all the types that may be used at
run time. The instrumentation layer uses it to look up type
information for new allocations and informs it whenever a
cast needs to be checked. Finally, the metadata storage ser-
vice stores a pointer-to-type mapping and can look up the
type information of an object about to be typecast. This
service allocates a memory area to store the mapping at run
time. It provides an operation to bind type information to
a pointer and to lookup a previous binding for a pointer.

All mechanisms that explicitly protect from type confu-
sion will incur two forms of run-time overhead: overhead
for maintaining metadata (allocating and deallocating ob-
jects) and overhead for explicit type checks at cast locations.
We designed TypeSan to minimize the allocation/dealloca-
tion time overhead. C++ programs are heavily affected
by allocator performance, as implicitly shown by how large
projects tend to replace the standard memory allocator with
high-performance allocators (tcmalloc and other allocators
in Chrome, jealloc in Firefox). Many of the objects being
allocated may also never be subject to downcasts, making it
even more important to minimize the impact of type track-
ing on such objects.

In order to meet these requirements, TypeSan relies on
a clean, uniform front-end design that flags allocations and
casts to the back-end system but introduces a completely
different mechanism to track type information, called the
metadata storage service in our design. Our metadata stor-
age service builds on the memory layout and structure in-
herently provided by the allocator and uses this structure

instrumentation

program

type management

type information

gettypeinfo

checkcast

metadata storage

pointer mapping

bind

lookup

Figure 1: Overview of TypeSan components.

to reduce the access overhead (“aligning” objects with their
metadata). Compared to existing disjoint metadata stor-
age layers that use different forms of lookup functions from
red-black trees to hashing for pointer range queries, our ap-
proach offers fast constant-time updates and lookups.

For the type checking instrumentation and related data
structures, we use a design focused on simplicity and cache-
efficient traversal. This design is effective even for workloads
with an extremely high number of casting operations. Fur-
thermore, for performance-sensitive applications, safe oper-
ations can be blacklisted or an approach like ASAP [24] can
trade off security against acceptable overhead. This is an-
other key motivation to minimize allocation-time overhead,
as it does not scale with the number of instrumented casts
in a program, acting as residual overhead instead.

Lastly, the instrumentation layer and the metadata stor-
age service are connected by the instrumentation layer, which
uses the Clang/LLVM compiler framework [15] to track al-
locations, instrument cast operations and extract type in-
formation. The instrumentation was designed with com-
pleteness in mind, following code patterns discovered in real-
world programs as well as basic C/C++ constructs expected
to be supported. Our instrumentation also allows full C-
C++ inter-operability, a novelty compared to state-of-the-
art solutions. This is important as some SPEC programs
mix C-style allocation with C++ classes and browsers also
use a mixture of C and C++ code.

5. INSTRUMENTATION LAYER
In this section we discuss the design of TypeSan’s instru-

mentation layer. The instrumentation layer interacts with
the TypeSan-hardened program by inserting hooks at rel-
evant locations. We first consider the instrumentation of
allocations, including the types of allocations we support to
be able to track run-time object types with high coverage.
Then, we discuss the instrumentation of typecasts to be able
to introduce type checks.

5.1 Instrumenting allocations
TypeSan adds a compiler pass to LLVM [15] to detect

object allocations and insert instrumentation to store the
corresponding pointer-to-type mapping. For each allocated
object we store a pointer corresponding to the type layout
of the object as a whole. However, keep in mind that down-
casts in C++ might be applied not just to the allocated
object pointer, but also to pointers internal to a given al-
location range, specifically in the case of composite types
(arrays, multiple inheritance, nested structs/classes). For
example, an object of class A containing objects of classes B

and C can be cast to B* using the original pointer while a
cast to C* requires an offset to reference the correct member
of class A. In this scenario, the type of the internal pointer
differs from the type associated at the allocation time, which
we need to account for in the design. For performance rea-
sons, we chose to keep the instrumentation of the allocations
as simple as possible and to defer handling composite types
to the check operation itself (discussed in Section 6). This
approach still introduces two additional requirements to our
design. First, the metadata storage service must be able to
retrieve the mapping for internal pointers (discussed in Sec-
tion 7). Second, the checker needs access to the offset within
the class definition corresponding to the internal pointer. To
support the latter, we also track the base pointer of the al-

location besides the type mapping. This design results in
simple and low-impact instrumentation, using the metadata
storage service to only store two pointers for each allocation
in the program. In the following, we describe the allocation
types we support as well as their motivation.

In C++, objects may reside in global memory, stack mem-
ory, or on the heap. These three kinds of objects have differ-
ent lifetimes and we therefore instrument them differently.
However, other than the location where we insert the hooks
to instrument the allocation, the single uniform metadata
storage service allows us to to treat objects in different mem-
ory areas equally. This simplifies our solution and improves
performance because TypeSan must not determine where a
pointer lives before looking it up.

The initialization and reuse of the mappings in object
metadata depend on the object’s memory area. For instance,
we can initialize the mappings for global objects once using
global constructors. However, for stack and heap objects,
we need a dynamic approach.

In the case of stack objects, we need to notify the metadata
storage service to take control over the object. These ob-
jects are not put on the regular stack but are instead moved
to a specific memory area where metadata tracking is en-
abled (see Section 7 for details on this operation). With this
change, we can use the metadata storage service to create
a mapping from the new object pointer to its metadata at
allocation time. This design decision of moving the objects
of interest to a separate location brings additional benefits
from a tracking perspective, since the memory location occu-
pied by a previously tracked stack object will only be reused
for another tracked object. During allocation, the new ob-
ject will overwrite the old metadata, removing it from the
system permanently. This allows us to persist the metadata
mapping after the lifetime of a stack object, removing the
need for explicit cleanup.

A special class of stack objects (often ignored in existing
solutions) arises when the program passes classes or structs
by value as function arguments. To address this special case,
TypeSan uses the same approach applied by the current
SafeStack implementation in LLVM, moving such objects
to a separate stack1.

Not all stack objects need tracking and we optimize our so-
lution by omitting allocation instrumentation wherever we
can prove that the program will never cast the allocated
stack objects. To be conservative, we verify whether the
function itself or the functions it may call perform any rele-
vant casts. We assume that any indirect (including virtual)
or cross-module function calls may perform downcasts, be-
cause for these cases we cannot statically determine that
they do not. Using this approach, we reduce overhead with-
out missing any checks. It is worth noting that our approach
is more conservative than CaVer’s, which optimistically con-
siders that such callees never attempt casts within their re-
spective call-graphs2.

For heap objects, we add instrumentation after calls to the
new and new[] operators as well as the traditional malloc
family of allocation functions. Although C++ structs and
classes are expected to be allocated using new (to ensure
calls to the appropriate constructors), we observed that one
of the four SPEC benchmarks with downcasts, uses mal-

1http://reviews.llvm.org/D14972
2We reported this issue to the authors of CaVer.

loc/realloc for allocating its C++ objects. Specifically,
the soplex benchmark uses malloc/realloc to handle al-
locations within its core DataSet class, which acts like an
object pool. Other classes, such as SVSet, maintain point-
ers to objects managed by a particular DataSet. As these
pointers are also subject to downcasting, it is critical to track
malloc/realloc in order to have type information available
for checking. Tracking heap deallocation is not necessary
as we built the metadata storage service to be robust and to
clean stale metadata. This ensures that such metadata can-
not influence type checks in case of an accidentally missed
deallocation. More details can be found in Section 7.

While inferring the allocation type and array size is trivial
for new and new[] (as it is part of the syntax), this is more
complicated for the malloc family of functions. We traverse
the intermediate representation code to look for cast opera-
tions applied to the resulting pointer to find the allocation
type. This method might fail for type-agnostic allocation
wrappers, but such wrappers can easily be added to the set
of allocation functions which we track. Array allocations can
be tricky when trying to infer the element count from a mal-

loc-like call-site, but our tracking scheme was designed to be
agnostic to array sizes, thus mitigating potential issues. In
practice we found no coverage issues when evaluating Type-
San against SPEC, showcasing our ability to track relevant
heap objects with our solution.

An interesting point in heap allocations is support for al-
locations within the standard template library (STL), which
countless applications use for their core data structures. Luck-
ily, STL’s template-based design means that all the code re-
lated to data structures is located within headers included
into every source file. This includes all their allocation wrap-
pers, which are also templated and instantiated on a per-
type basis. We confirmed that our instrumentation correctly
picks up the allocations within the STL data structures and
we successfully check the downcasting operations applied to
the individual elements.

5.2 Instrumenting typecasts
Whenever TypeSan encounters a downcast operation (from

a base class to a derived class), it inserts a call to our type-
casting verification function. Such a cast is present in the
code either when performing a static_cast operation be-
tween appropriate type or when using an equivalent con-
struct such as static C-style casts. In practice, downcast-
ing can exhibit two types of behavior and we optimize our
checker to support each one specifically. In the general case,
the result of the static cast is the source pointer itself (with
no added offset), but with a new source-level type. This
happens when the source base type is the primary base class
of the derived type, which is always the case when casting
without multiple inheritance. In this case, the TypeSan in-
strumentation calls the checker with the value of the pointer
and an identifier corresponding to the destination type. If
classes use multiple inheritance it can happen that a cast
operation occurs from a secondary base class to a derived
type. In this scenario, a negative offset is added to the
source pointer as transformation from an internal pointer
(to the secondary base) to the base pointer of the object.
The checker needs information about the resulting pointer
to infer the appropriate offset within the structure layout,
but in case of type confusion the negative offsets might make
a valid pointer go out of bounds, making it impossible to in-

http://reviews.llvm.org/D14972

fer the appropriate type information for the object pointed
to. For this reason, TypeSan calls a second version of the
checker in this instance, which takes both the source and
destination pointers as well as the type identifier for the re-
sulting type.

6. TYPE MANAGEMENT SERVICE
TypeSan manages metadata on a per-allocation basis. Ev-

ery block allocated by a single malloc call, new operator,
global variable, or stack variable is associated with at most
a single pointer to a type information data structure. This
data structure therefore encodes all permissible casts using
pointers pointing into the allocated block. Any object can
be cast back to itself using the original pointer, but com-
position and inheritance create additional opportunities for
casts. For example, a pointer to an object can be cast to
any of its base classes and a pointer to a field of an object
can be cast to the type of the field (and transitively to any
type on the inheritance chain). In this section, we discuss
the data structures used to encode this information.

The type management service is responsible for associat-
ing type layouts with allocation sites and using these layouts
to validate downcast operations. Type checking at its core
can be divided into two steps. The first one is the ability
to infer the allocation-time type associated with the pointer
resulting from the typecast. This is the most derived type
associated with the particular offset (from the pointer to
the allocation base) within the original allocation. Once
this information is known, the second part of the type check
involves the comparison of the allocation-time type with the
type specified in the cast. The layout of the latter must be
compatible with the former for the cast to be valid. The data
structures employed by this service share the same purpose
as the THTable structure in CaVer, but we further optimize
the type checks by dividing it in in two phases.

In the following sections, we describe the data structures
TypeSan uses to perform these operations.

6.1 Type layout tables
Type layout tables describe each relevant offset within an

allocation to enable fast lookups of the offset-specific type
information during a check. Specifically, a type layout table
is a list of mappings of unique offsets to data fields corre-
sponding to nested types. The list (array) starts with an
entry for offset 0 containing the unique hash corresponding
to the type as a data field. The layout tables incorporate
nested types in one of two ways. As a first option, the nested
types can be flattened into a type layout for good cache effi-
ciency during traversal. Alternatively, they can be separated
via an indirection for better space efficiency. Flattening a
nested type involves injecting an offset-adjusted copy of its
type layout into the containing type, where its type layout is
copied and adjusted into the layout of the containing type.

An avid reader may notice that flattening can invalidate
the property mentioned earlier that offsets in the type layout
table are unique. After all, a nested class might occur at off-
set 0 (for example with primary base classes). This is where
the second part of our type check, the layout compatibility
check, comes into play. A class which includes a nested class
at offset 0 is practically layout compatible with the latter.
Intuitively, if the next type class has another class at offset
0 of object, then we can always use the object as representa-
tive for both types. TypeSan tracks this relationship in type

relationship tables (see Section 6.2). Thus, the type layout
table only needs to track the (unique) ”derived-most” type
for matching offsets.

As mentioned earlier, flattening is not compulsory, since
the type layout table also supports indirection. In this mode,
the data element of a particular entry includes a pointer to
the type layout table corresponding to the nested type. In
addition, TypeSan adds a sentinel element to the type table
to mark the end of the nested type. This allows the traversal
code to infer quickly whether or not it should follow the
indirection. It skips the sentinel element if its offset overlaps
with an existing entry in the table to maintain uniqueness.

Flattening generally improves performance at the cost of
space. While TypeSan mostly uses the flattened mode, it
uses the non-flattened mode to generate an efficient array
abstraction as the array length may be dynamic (in the lack
of a way to optimize for performance we optimize for space).
In particular, it replaces each nested array with a single
indirect entry to the type layout table of the array element
type, allowing TypeSan to support nested arrays of any size,
without degrading checking speed.

The property of enforcing unique offsets in the type layout
table allows us to implement efficient traversal by ordering
the entries by offset. During indirection, the type manage-
ment service updates the offset that is being searched to
match the follow-up type layout table (which is just a subset
of the original type). In the case of a nested array, it updates
the offset to represent the offset into the corresponding array
element, instead of the array itself—using the array-stride
as input. This is supported, by including the overall size of
the type (including requested alignment) as part of the type
layout table.

When the instrumentation adds metadata at an allocation
site, it simply requests a type layout table that corresponds
to the type that is allocated. Type layout tables are gener-
ated once for each type, by recursively traversing the type
information in LLVM to find all nested elements. For poten-
tial array allocations, it marks the pointer to the type lay-
out table to signal additional processing of the offset. This
processing is identical to how we deal with nested arrays.
Accidentally marking an allocation as being of type array
does not affect correctness, it just involves a couple of extra
instructions being executed during type lookup. As such our
static analysis does not have to be complete as long as it is
conservative in identifying allocations of single elements.

6.2 Type relationship tables
In the second stage of the type check we check for raw

pointer compatibility between the type identified for the
pointer and the type defined in the cast. Such compati-
bility typically happens between derived classes and their
primary base class. As mentioned earlier, another case of
compatibility happens between unrelated types if one of the
types is nested in the other at offset 0.

Furthermore, CaVer defined the concept of phantom classes:
derived classes with no additional members compared to
their base class. Sometimes the program downcasts base
classes to such phantom classes, resulting in benign bad
casts. Thus we also include phantom classes in our compat-
ibility model. Using the compatibility model, we generate
a set of type hashes corresponding to the compatible types
for each class in the program and refer to it as a type rela-
tionship table. Once TypeSan has extracted the type of a

pointer from the type layout table, it checks the correspond-
ing type relationship table for the membership of the type
defined in the cast. The operation needs to find an exact
match to verify a cast. If it finds no match, it reports an
error of a mismatched type.

Currently we implement sets as simple vectors, with hashes
ordered according to the type hierarchy. We found this so-
lution to be adequate in terms of speed, but we can easily
replace it with alternative set implementations, such as the
fast LLVM bitset variant. Doing so is easy as the type re-
lationships table is conceptually nothing more than a set as
a result of the split of the type information into separate
layout and relationship tables.

By having the phantom classes be first-class members of
the type relationship tables, we ensure uniform support for
them without performance degradation. In contrast, the
publicly released CaVer code requires a type check restart
for every phantom class if normal inheritance fails to find a
match.

6.3 Merging type information across source files
Generating large amounts of type information may ne-

cessitate merging across different source files—an expensive
and potentially difficult operation. We rely on the One Def-
inition Rule (ODR) in C++ to minimize the need to merge
information across the project. ODR states that every class
definition across all source files linked together needs to be
identical. C++ also requires nested and base types to be
fully defined in the source files that use them. As a result,
the type layout information for the same type within dif-
ferent source files is always identical. The same is true for
the type relationship tables—except their phantom class en-
tries. Since the phantom classes represent derived classes,
the set of phantom classes can easily change from one source
file to another, and merging may be necessary. TypeSan
uses a strategy where it only needs to merge these entries in
the type relationship tables to minimizing the merging cost.
Any program violating the ODR would trigger error reports
in TypeSan. This would be correct, since violating the ODR
is type confusion in itself.

7. METADATA STORAGE SERVICE
In this section, we discuss the metadata storage service,

which handles storage of metadata at run time. This service
allows us to map from object base addresses to type lay-
out tables at run time. Key requirements for our metadata
storage service are (i) fast update operations and (ii) range-
based lookups (to support interior pointers due to compo-
sition). Related work [17, 2] has used alignment-based di-
rect mapping schemes to track complex metadata, relying
on dedicated custom memory allocators. Such systems often
run into problems for stack-based memory allocations [17]
where the allocator has no detailed knowledge of allocations.
As a result we designed METAlloc [12], a novel object track-
ing scheme, based on variable compression ratio memory
shadowing, which solves these issues and allows us to have
an efficient and uniform metadata storage service for all al-
location types.

Variable compression ratio memory shadowing relies on
the assumption that all objects on a certain memory page
share the same alignment. A uniform alignment guarantees
that every alignment-sized slot within the page corresponds
to a single object, enabling the tracking of metadata at the

level of slots instead of objects, while preserving correctness.
Each page can thus be associated with an alignment and a
metadata range, including as many entries as the number of
alignment-sized slots in the page. Such a mapping simplifies
storage of metadata and allows us to assume a certain lay-
out for objects on a per-page basis. Given a page table-like
infrastructure, the mapping allows finding metadata corre-
sponding to any particular pointer in constant time, by us-
ing the alignment to look up the slot index and to retrieve
the metadata stored for the appropriate slot. This mapping
also mirrors traditional page tables as the alignment and the
base address of the metadata range can be compressed into
a single 64-bit value (since pointers only require 48 bits).
We call this data-structure the metadata directory. Figure 2
shows the mapping operation from any pointer to the cor-
responding object metadata.

An update operation with this metadata results in finding
the metadata for the base address of the object and then up-
dating all entries which correspond to the object range. The
number of entries which need to be updated is the number
of alignment-size slots that the object spans across, making
it critical to select the largest possible alignment to improve
update performance. This is where the variable compres-
sion ratio comes into play, with large objects having larger
alignments, thus their metadata is compressed relative to
their size. The system also works with the default 8-byte
alignment of objects in existing systems, but the update op-
eration would end up too costly for stack and heap objects.
Using alignments which are too large can also generate in-
creased memory fragmentation resulting in unnecessary per-
formance overhead, making it critical to select the most ap-
propriate alignments.

In the case of global memory, the overhead introduced
by the update operations rarely affects the performance of a
running program, thus we decided to leverage the existing 8-
byte alignment applicable for global objects. We update the
metadata directory entries to track all loaded sections when-
ever we detect that a new shared object has been loaded into
the address space of the program.

For heap allocations, tcmalloc [7] (the allocator used by
the Chrome browser and other Google products) already
ensures that every memory page under its control contains
only objects of the same size-class and alignment. It enforces
this property to efficiently generate free lists, thus ensuring
our assumptions for free, without needing to perform any
changes to the allocation logic. We only extended tcmalloc
to track the metadata directory entries whenever a memory
page is associated with a certain size-class, which happens
rarely in practice.

Stack allocations are challenging, as they can be subject
to ABI restrictions. We mitigate this limitation by mov-
ing relevant objects to a secondary stack similar to the op-
erating principles of SafeStack [14]. SafeStack is effective
at moving dangerous stack allocations to a secondary stack
with practically no overhead and minimal impact on ap-
plication compatibility. We use the instrumentation layer,
as mentioned earlier, to tell the metadata storage service
about stack objects, which are then moved to a secondary
stack tracked by the metadata directory, where we enforce
a 64-byte alignment for each object. ABI restrictions are
not applicable, since all tracked stack objects are local vari-
ables, whose location can be freely chosen by the compiler.
The 64-byte alignment is reasonable as we only move a small

Figure 2: Mapping from a pointer to a metadata
entry. The page component is used to look up the
start address of the metadata region and the align-
ment. While the latter together with the page offset
is used to compute the offset within the metadata
region.

subset of stack objects, thus overall memory fragmentation
of the program is limited.

As mentioned earlier in Section 5, deallocation of heap
objects is handed internally by the metadata storage service
and no extra instrumentation is needed. While the stack
contains only tracked objects, thus metadata will always be
up to date with allocations, tcmalloc does manage all heap
objects, including untracked ones. As such, we extended tc-

malloc to conservatively assume that every new allocation
is untracked and to clear stale metadata associated with
any new allocation if it detects such. This approach mini-
mizes the overhead when metadata is used sparingly, while
ensuring that stale metadata can never affect untracked al-
locations.

Moreover, our solution is not affected by thread concur-
rency. The metadata directory is only updated when mem-
ory is mapped in from the system. At this point all the
entries read/written during this operation are the ones cor-
responding to the allocation range, which is still in sole con-
trol of the running thread. The metadata entries are also
updated only during object allocation and the entries writ-
ten are unique to the allocation range, thus they do not
interfere with concurrent lookups. The update operation de-
pends only on the metadata directory entry corresponding
to the pointer itself, which cannot be subject to a concurrent
write.

8. LIMITATIONS
Our approach is based on an LLVM-instrumentation pass

that reasons on the clang and LLVM IR level, therefore
source code in either C or C++ is required. Any alloca-
tions or casts in assembly are not supported.

As stated in our treat model (and similar to related work),
we assume that the attacker has no unrestricted write primi-
tive at their disposal. We therefore do not protect our meta-
data against malicious writes. Any metadata protection
mechanism is orthogonal to this work and equally applies
to other protection systems which complement TypeSan.

To support combined protections, TypeSan deliberately
imposes as few restrictions and changes in the memory lay-
out as possible. It already integrates with SafeStack, a
fast stack protection solution offered by compilers today.
Similarly, while TypeSan makes a design assumption about
the heap allocator, it is compatible with arguably the two
most commonly used custom memory allocators: tcmalloc
(Chromium) and jemalloc (Firefox and Facebook). When

combined with other memory safety solutions, TypeSan can
preserve metadata integrity by construction. When deployed
standalone, our design is amenable to existing low-overhead
metadata protection techniques, such as APM [8] or write-
side SFI (e.g., pointer masking). The overhead of such tech-
niques is amortized across all defense solutions. For exam-
ple, if we employ SafeStack and we expect SafeStack (already
in clang) to be adequately protected moving forward due to
recent attacks [8, 19], TypeSan can benefit from the same
metadata protection guarantees at no additional cost. Note
that TypeSan tolerates arbitrary reads as we do not rely on
secret information hidden from the attacker.

Custom memory allocators (CMAs) can prohibit Type-
San from appropriately tracking heap allocations. Unfortu-
nately, this is a fundamental limitation for instrumentation
systems which rely on object information tracking. TypeSan
uses tcmalloc as the back-end allocator. This is a suitable
replacement for other general purpose allocators, but objects
allocated within CMAs (such as pool or SLAB allocators)
will not be tracked by our system.

9. EVALUATION
To show that TypeSan achieves higher coverage and lower

overhead than previous solutions, we evaluated our proto-
type using a number of demanding CPU-intensive (and cast-
intensive) workloads. We test Firefox because browsers
are a common target for attackers of type confusion vul-
nerabilities, given the fact that they are usually written in
C++ for performance reasons and have a large attack sur-
face because of the fact that they provide a substantial API
to foreign Javascript code. We benchmarked Firefox us-
ing the Octane [9], SunSpider [10], and Dromaeo [6] bench-
marks. Octane and SunSpider focus on Javascript perfor-
mance, while Dromaeo has subtests for both Javascript and
the DOM. Moreover, we implemented our own microbench-
marks to isolate the overhead and report worst-case figures
for TypeSan and existing solutions. In addition, we run the
SPEC CPU2006 C++ benchmarks, which all heavily stress
our allocator instrumentation and some (e.g., dealII and om-
netpp) our typecast instrumentation.

In our evaluation, we consider a number of different sys-
tem configurations. Our baseline configuration compiles with
Clang 3.9 [15] at the default optimization levels. The base-
line is not instrumented but does use the tcmalloc [7] alloca-
tor to report unbiased results, given that tcmalloc generally
introduces a speedup that should not be attributed to Type-
San. In addition to the baseline, we have the TypeSan and
TypeSan-res configurations. The former instruments every
possible cast while the latter does not instrument any casts.
The TypeSan-res configuration shows to what extent a sys-
tem like ASAP [24] can reduce the performance impact of
our instrumentation (trading off security) when only a small
performance budget is available. We ran our benchmarks on
an Intel Core i7-4790 CPU with 16 GB of RAM, using the
Ubuntu 15.10 Linux distribution.

9.1 Performance

9.1.1 Microbenchmarks
To verify that TypeSan provides low allocation-time and

typecast-time overhead, we created microbenchmarks that
measure how long these operations take, both on the stack
and on the heap. To compare our results against state-of-

Figure 3: Allocation performance as a function of
allocated object size.

the-art solutions, we compiled CaVer [17] from source [16]
and configured in the same way as TypeSan—except that
we do not use tcmalloc since CaVer ships with its own cus-
tom allocator. To prevent the target operations from being
removed by optimizations, we switched to the -O1 optimiza-
tion level for this experiment. To isolate the overhead, we
measured the impact of (i) the number of allocated stack
objects and (ii) the object size. The former is important
since CaVer tracks stack objects with red-black trees, whose
performance degrades with the number of objects. The lat-
ter is important since TypeSan needs to initialize multiple
metadata entries for large objects, incurring more overhead.

Figure 3 depicts the impact of the object size on alloca-
tion performance when no other stack objects are present.
Allocating an object on the stack is almost instantaneous for
the baseline and takes a fixed but long time for CaVer. For
TypeSan, allocation time on the stack is proportional to the
object size as multiple metadata entries need to be initial-
ized for large objects. However, even for objects as large as
8KB, TypeSan is still faster than CaVer. Small objects up
to 128 bytes take only 0.5ns extra to allocate with TypeSan,
while CaVer adds at least 48.8ns even for these small (and
common) allocations. On the heap, allocation time grows
linearly with the allocation size in all cases. Overall, Type-
San is close in performance to the baseline while CaVer adds
considerable overhead. For heap allocations up to 128 bytes,
TypeSan adds at most 7.0ns overhead while CaVer adds at
least 26.7ns.

We believe that it is unlikely for programs to frequently
allocate large, bloated classes without using them and thus
hiding the allocation overhead. As further mitigation to the
scaling based on the stack object size, it is possible to extend
TypeSan to use additional secondary stacks with increased
alignments for such large classes. These results support our
claims that TypeSan is particularly suitable for applications
that allocate many objects, especially on the stack.

Figure 4 and Figure 5 show the impact of the number of
allocated stack objects on allocation and typecast perfor-
mance (respectively), using an object size of 16 bytes. The
overhead patterns are in the same region for both scenarios.
CaVer’s overhead on the stack increases with the logarithm
of the number of objects (due to the use of red-black trees)

Figure 4: Allocation performance as a function of
allocated object count.

Figure 5: Typecast performance as a function of al-
located object count.

while TypeSan’s does not depend on the number of allocated
objects. Even at relatively low allocation counts, CaVer’s
stack allocations are much more expensive than TypeSan’s.

For every typecast, in turn, TypeSan adds an overhead of
only 3.8ns, regardless of whether the object is allocated on
the stack or on the heap and regardless of the number of
allocated objects. CaVer’s typecast overhead is higher in all
cases. In particular, the heap overhead is a constant 13.6ns,
while the stack overhead starts at 11.0ns and increases with
the number of allocated objects.

9.1.2 Performance overhead
Table 5 reports our performance on the SPEC CPU2006

C++ benchmarks [13] and Firefox. The first four SPEC
benchmarks perform static typecasts while the others do
not. In the latter case, the overhead stems from TypeSan
having to still track objects that cannot be statically and
conservatively proven not be typecast during the execution.
In the default configuration, overheads range from negligi-
ble to moderate and the overheads on the benchmarks re-
ported by CaVer [17] are much lower. In particular, CaVer

casts TypeSan TypeSan-res
dealII yes 30.8 (0.2) 3.6 (0.1)
soplex yes 1.8 (0.7) 1.5 (0.8)
omnetpp yes 27.2 (1.7) 2.4 (3.0)
xalancbmk yes 7.1 (0.4) 4.4 (0.3)
namd no -0.6 (0.1) -0.5 (0.1)
povray no 23.9 (0.3) 22.6 (0.2)
astar no -0.2 (0.5) 0.1 (0.5)
geomean yes 13.2 6.4
geomean both 12.1 4.6
ff-sunspider 40.6 (1.4) 11.4 (1.1)
ff-octane 18.6 (5.1) 2.8 (0.9)
ff-drom-js 12.4 (1.5) 4.0 (1.7)
ff-drom-dom 71.2 (1.5) 43.5 (0.6)
geomean 33.9 14.3

Table 5: Performance overhead on the SPEC
CPU2006 C++ benchmarks and Firefox (%), stdev
in parentheses.

reported four times our overhead (29.6%) on xalancbmk and
20.0% on soplex while ours is negligible. Povray stands out
for having high overhead despite its lack of casts. This is
mostly due to the many stack objects allocated in a recur-
sion between the functions Ray_In_Bounds and Intersec-

tion. Other than this special case, overheads are lowered
by reducing the number of checks (a la ASAP [24]). The
negative overhead for namd may be explained by variations
in memory layout [18]. For example, in all but one case, our
TypeSan-res configuration can greatly bring down the over-
head. The overhead for Firefox is unfortunately somewhat
higher, especially for the Dromaeo DOM workload. The high
overload is most likely due to the fact that Firefox performs
many object allocations, especially on the stack. On aver-
age, however, our overhead is close to half of the overhead
reported by CaVer (64.6%). The results for the TypeSan-res
configuration show that this overhead can be reduced even
further by selectively instrumenting casts. Note that our
coverage on Firefox is considerably lower than on the other
benchmarks mostly due to the use of CMAs (though still
much higher than the competition, see Table 8), so extend-
ing our solution to cover the remaining casts could increase
the overheads reported here.

9.1.3 Memory overhead
Table 6 reports our memory usage on the SPEC CPU2006

C++ benchmarks and Firefox, measured in terms of binary
size (static) and the maximum resident set size (dynamic).
While TypeSan generally introduces nontrivial memory over-
head, we believe this is worthwhile (and acceptable in prac-
tice), given the security it offers with negligible performance
overhead. Moreover, compared to CaVer [17], our relative
run-time memory overhead is much lower for the two SPEC
benchmarks they considered (9% vs. 56% on xalancbmk and
1% vs. 150% on soplex). It is unfortunately impossible to
compare our memory overhead on Firefox as we measured
a different version than the one reported by CaVer. The
negative memory overhead for Dromaeo-DOM may be ex-
plained by the fact that this benchmark runs for a fixed
amount of time, completing fewer runs when the browser
is slowed down through our instrumentation. Our memory
overhead is mostly due to the metadata storage service it-

binary size resident set
base ts inc% base ts inc%

namd 0.3 0.6 81.6 50.9 56.9 11.7
dealII 3.1 5.2 69.3 818.6 1453.1 77.5
soplex 0.4 0.8 112.7 560.9 568.4 1.3
povray 1.0 1.4 45.2 8.7 18.8 117.4
omnetpp 0.6 1.2 90.4 157.8 224.5 42.3
astar 0.0 0.3 597.1 310.4 314.4 1.3
xalancbmk 4.1 7.6 85.8 451.3 492.7 9.2
geomean 118.0 31.7
ff-sunspider 159.1 318.6 100.2 491.1 928.2 89.0
ff-octane 159.1 318.6 100.2 844.4 1534.4 81.7
ff-drom-js 159.1 318.6 100.2 572.2 1005.8 75.8
ff-drom-dom 159.1 318.6 100.2 4232.0 4015.7 -5.1
geomean 100.2 19.9

Table 6: Memory usage for the SPEC CPU2006
C++ benchmarks and Firefox (MB), ts=TypeSan.

self. As future work, it is possible to share this infrastructure
and its memory overhead with other defenses that maintain
per-object metadata (e.g., bounds checking), reducing the
memory usage of the combined system.

9.2 Coverage

9.2.1 Typecast coverage test suite
To test the correctness of TypeSan and future type-confusion

detection systems, we developed a test suite for a wide range
of different code constructs that might affect typecast saniti-
zation. The test cases covered by the test suite are inspired
by our extensive experience with real-world C++ programs.
Our test suite is available as part of the open source repos-
itory of TypeSan to help future researchers in testing their
systems. The test suite verifies correctness using three differ-
ent dimensions: allocation type, composition type, and cast
type. The test suite allows different configurations from each
dimension to be combined and tested simultaneously.

Every test allocates an object of type AllocationType

using the desired configuration. It then sends a pointer to
the allocated object to a function, which derives a pointer
to a member of type BaseType nested into AllocationType

with the desired composition type configuration. Finally,
we downcast the pointer to a type derived from BaseType,
called DerivedType. We implement the functions in different
source files to uncover any potential bugs in interprocedural
cross-module static analysis in the checker. Other than false
negatives, the test suite also checks for false positives, by
replacing the BaseType with a derived type of DerivedType
in AllocationType.

Our test suite considers the following allocation types:
stack object, stack array, struct argument passed by value,
global object, global array, new / new[] (including over-
loaded operator), and malloc/calloc/realloc (including ar-
rays). For array types, we also consider multidimensional
arrays where possible. We consider the following composi-
tion types (the relationship of BaseType with respect to Al-

locationType): equivalence, nested, nested array element,
and inheritance (primary, secondary, and virtual). Finally,
we support the following cast types: from primary base to
derived type, from secondary base to derived type, and from
primary base to a phantom class of the real type.

TypeSan successfully passes all combinations of these con-
figurations, showcasing our coverage on a wide range of

allocations casts types
heap stack global

dealII 322 5,231 1,125 716 1,238
soplex 40 447 161 2 311
omnetpp 441 85 623 449 568
xalancbmk 414 3,216 2,263 2,688 1,768
namd 10 18 4 0 16
povray 36 255 200 0 257
astar 13 11 7 0 18
firefox 2,458 185,908 42,710 68,369 38,764

Table 7: Instrumentations.

code constructs. For comparison, we also tested CaVer [16]
and found that it only passes the following allocation types:
global object and new / new[] (including overloaded opera-
tor). CaVer also reported false positives when nested arrays
were used for the composition. We contacted the authors
about all the tests that failed, but we have not received an
explanation or a fix for these issues.

9.2.2 Coverage on benchmarks
Table 7 shows the number of code locations where we in-

sert instrumentation. Note that the information about al-
locations is based on the source code because it cannot be
easily recognized in the binary due to inlining. The num-
ber of cast checks and types are based on the final binary
to make them comparable to CaVer [17]. The number of
checks in the source code is considerably lower (for example
19,578 for Firefox), presumably due to optimizations that
cause code to be duplicated. Compared to CaVer, we insert
slightly fewer checks in Firefox, more in Xalanc and the same
number in Soplex. This may be due to differences in versions
or compiler (settings). We generate more type information
than CaVer on Firefox and Soplex, but less on Xalanc. This
may be due to differences in representation of type infor-
mation. In all cases, we insert more instrumentation than
UBSan does [17].

Table 8 shows the typecast coverage of TypeSan compared
to state-of-the-art solutions, CaVer [17] in particular. Cov-
erage percentages are computed as the fraction of non-null
casts correctly checked by the system—missing checks are
due to inability to correctly track the corresponding ob-
ject. As such, it is an indication of the security provided
by the system. TypeSan reports over 89% coverage on each
of the relevant SPEC benchmarks, and 100.0% on all but
one. Unfortunately, coverage is not as high on Firefox. We
have found that this is due to the widespread use of pool al-
locators, which violate the assumption made by our system
(as well as other object tracking systems) that objects are
allocated individually. This issue could be solved by modi-
fying Firefox to allocate objects directly. This may be viable
performance-wise due to the allocation performance offered
by tcmalloc. While CaVer does not report per-benchmark
results, they report a total of 1,077k verified casts. As such,
our coverage is approximately more than 300,000 times as
high. For both SPEC and Firefox, Table 8 shows that we
track many more allocated objects than CaVer. This ex-
plains that we are able to check more casts despite a similar
number of instrumentation sites—casts can only be checked
if type information metadata was stored at allocation time.
As shown in Table 8, we provide security far superior to the

allocations casts
TypeSan CaVer non-null TypeSan % CaVer %

dealII 597m 3,596m 3,596m 100.00 0 0.00
soplex 21m 1,058 209k 209k 100.00 0 0.00
omnetpp 264m 2,014m 2,014m 100.00 0 0.00
xalancbmk 4,538m 278k 284m 254m 89.52 24k 0.01
ff-sunspider 463m 293m 92m 31.43
ff-octane 967m 991m 122m 12.35
ff-drom-js 15,824m 12,976m 3,032m 23.37
ff-drom-dom 301,540m 46,961m 21,253m 45.26
ff-total 318,793m 15,530k 61,222m 24,500m 40.02 1,077k 0.00

Table 8: Typecast coverage.

current state of the art while improving performance at the
same time.

10. RELATED WORK
To the best of our knowledge, UBSan [20] and CaVer [17]

are the only other systems that perform verification at cast
time like TypeSan. Our system is inspired by CaVer and has
considerable similarities with it. In particular, it shares the
same benefits with regard to UBSan: we do not rely on run-
time type information (RTTI) and therefore we can handle
non-polymorphic classes and protect binaries without the
need for manually maintained blacklists. Moreover, as we
have shown in our evaluation, we introduce less overhead
than CaVer, which in turn has shown by its authors to be
more efficient than UBSan.

Compared to CaVer, we have a similar instrumentation
layer based on an LLVM instrumentation pass, but we have
completely redesigned the metadata storage mechanism. In
particular, we use a uniform variable compression ratio mem-
ory shading scheme with off-the-shelf allocation strategies,
rather than a purpose built custom memory allocator of the
heap and the red-black trees used for the stack in CaVer.
Our approach is more efficient for both insertions (object
allocations) and lookups (typecast checks) because it does
not require identifying the type of the allocation (due to
its uniform nature) and it does not incur the significant and
non-linear overhead that red-black trees bring to trivial stack
allocations. Moreover, our solution is not affected by thread
concurrency. This is a major simplification compared to
CaVer, which uses per-thread red-black trees.

Another solution that achieves similar goals as ours is pre-
venting calls through incorrect virtual method tables (vta-
bles). For example, Bounov et al. [3] present an approach
that can efficiently verify for each virtual call that the vtable
is valid for the static type through which the call is per-
formed. This mitigates some type confusion vulnerabilities,
but such solutions cannot protect non-polymorphic classes
because they do not have vtables. Moreover, this solution
only detects type confusion when the object is subjected
to a virtual call, thus missing potential memory corruption
from a mismatched layout in other parts of the code. Clang
CFI [4] uses such a system to check cast operations involv-
ing polymorphic classes, but there is no publicly available
evaluation of the system and it is still restricted to a subset
of downcast operations.

On binaries without source code, Dewey and Giffin [5]
show how data flow (reaching definition) analysis may help
to determine bounds on vtables and detect type confusion
statically by ensuring that a virtual function call does not
stray beyond the bounds of the vtable. As noted by the
authors, their analysis is prone to false positives and false

negatives and therefore more suited to reducing the number
of type confusion bugs prior to deployment.

Finally, CFI [1] and other advanced protection mecha-
nisms for forward edges in C++ programs [21, 23, 22, 14]
limit the wiggle room that attackers have to divert control
via indirect control transfers. However, as type confusion is
mostly a data problem, such solutions only address it partly.
Similarly, VTable protection schemes [25, 11], may check the
types of virtual calls or the sanity of vtable pointers, but do
not prevent the misuse of type confusion in general.

11. CONCLUSION
Type confusion vulnerabilities play an important role in

modern exploits as shown in recent attacks against Google
Chrome or Mozilla Firefox. Existing solutions that detect
type confusion exploits are (i) incomplete, missing a large
number of typecasts and (ii) prohibitively slow, thereby hin-
dering general adoption.

We presented TypeSan, an LLVM-based type-confusion
detector that leverages an optimized allocator to store meta-
data in an efficient way to reduce the overhead for updating
metadata. Building on several optimizations for both the
underlying type checks and the metadata handling, we re-
duce the performance overhead by a factor 3–6 compared to
the state of the art. Our performance figures suggest Type-
San can be used as an always-on solution in practical set-
tings. In addition, TypeSan is complete and no longer misses
typecasts on either the stack or between C and C++ object
interactions. As we show in the SPEC CPU2006 bench-
marks, such interoperability issues between programming
languages cause prior work to miss a large number of casts.

12. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback.

This work was supported, in part, by NSF CNS-1464155 and
CNS-1513783, the European Commission through project
H2020 ICT-32-2014 “SHARCS” under Grant Agreement No.
64457, and the Netherlands Organisation for Scientific Re-
search through the grant NWO 639.023.309 VICI“Dowsing”.

13. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In CCS, 2005.

[2] P. Akritidis, M. Costa, M. Castro, and S. Hand.
Baggy bounds checking: An efficient and
backwards-compatible defense against out-of-bounds
errors. In USENIX Security, 2009.

[3] D. Bounov, R. G. Kıcı, and S. Lerner. Protecting c++
dynamic dispatch through vtable interleaving. In
NDSS, 2016.

[4] Clang. Clang 3.9 documentation - control flow
integrity.
http://clang.llvm.org/docs/ControlFlowIntegrity.html.

[5] D. Dewey and J. Giffin. Static detection of c++ vtable
escape vulnerabilities in binary code. In NDSS, 2012.

[6] T. M. Foundation. Dromaeo, javascript performance
testing. https:
//www.webkit.org/perf/sunspider/sunspider.html.

[7] S. Ghemawat and P. Menage. Tcmalloc:
Thread-caching malloc. http:
//goog-perftools.sourceforge.net/doc/tcmalloc.html,
2009.

[8] E. Goktas, R. Gawlik, B. Kollenda,
E. Athanasopoulos, G. Portokalidis, C. Giuffrida, and
H. Bos. Undermining information hiding (and what to
do about it). In USENIX Security, 2016.

[9] Google. Octane benchmark.
https://code.google.com/p/octane-benchmark.

[10] Google. Sunspider benchmark. https:
//www.webkit.org/perf/sunspider/sunspider.html.

[11] I. Haller, E. Goktas, E. Athanasopoulos,
G. Portokalidis, and H. Bos. Shrinkwrap: Vtable
protection without loose ends. In ACSAC, 2015.

[12] I. Haller, E. van der Kouwe, C. Giuffrida, and H. Bos.
METAlloc: Efficient and comprehensive metadata
management for software security hardening. In
EuroSec, 2016.

[13] J. L. Henning. Spec cpu2006 benchmark descriptions.
ACM SIGARCH Computer Architecture News,
34(4):1–17, 2006.

[14] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song. Code-pointer integrity. In
OSDI, 2014.

[15] C. Lattner and V. Adve. Llvm: A compilation
framework for lifelong program analysis &
transformation. In CGO, pages 75–86. IEEE, 2004.

[16] B. Lee, C. Song, T. Kim, and W. Lee. Caver source
code. https://github.com/sslab-gatech/caver.

[17] B. Lee, C. Song, T. Kim, and W. Lee. Type casting
verification: Stopping an emerging attack vector. In
USENIX Security, 2015.

[18] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Producing wrong data without doing
anything obviously wrong! ACM Sigplan Notices,
44(3):265–276, 2009.

[19] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and
C. Giuffrida. Poking holes in information hiding. In
USENIX Security, 2016.

[20] G. C. Project. Undefined behavior sanitizer.
https://www.chromium.org/developers/testing/
undefinedbehaviorsanitizer.

[21] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
U. Erlingsson, L. Lozano, and G. Pike. Enforcing
forward-edge control-flow integrity in gcc & llvm. In
USENIX Security, 2014.

[22] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras,
L. Sambuc, A. Slowinska, H. Bos, and C. Giuffrida.
Practical Context-Sensitive CFI. In CCS, 2015.

[23] V. van der Veen, E. Goktas, M. Contag,
A. Pawlowski, X. Chen, S. Rawat, H. Bos, T. Holz,
E. Athanasopoulos, and C. Giuffrida. A tough call:
Mitigating advanced code-reuse attacks at the binary
level. In IEEE S&P, 2016.

[24] J. Wagner, V. Kuznetsov, G. Candea, and J. Kinder.
High system-code security with low overhead. In IEEE
S&P, 2015.

[25] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song,
M. Payer, and D. Song. Vtrust: Regaining trust on
virtual calls. In NDSS, 2016.

http://clang.llvm.org/docs/ControlFlowIntegrity.html
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://code.google.com/p/octane-benchmark
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
https://github.com/sslab-gatech/caver
https://www.chromium.org/developers/testing/undefinedbehaviorsanitizer
https://www.chromium.org/developers/testing/undefinedbehaviorsanitizer

	Introduction
	Background
	Type confusion
	Defenses against type confusion

	Threat model
	Overview
	Instrumentation layer
	Instrumenting allocations
	Instrumenting typecasts

	Type management service
	Type layout tables
	Type relationship tables
	Merging type information across source files

	Metadata storage service
	Limitations
	Evaluation
	Performance
	Microbenchmarks
	Performance overhead
	Memory overhead

	Coverage
	Typecast coverage test suite
	Coverage on benchmarks

	Related work
	Conclusion
	Acknowledgments
	References

