

Memory corruption:
Why we can’t have nice things

Mathias Payer (@gannimo)
http://hexhive.github.io

http://hexhive.github.io/

Software is unsafe and insecure

● Low-level languages (C/C++) trade type safety and memory
safety for performance
– Programmer responsible for all checks

● Large set of legacy and new applications written in C / C++
prone to memory bugs

● Too many bugs to find and fix manually
– Protect integrity through safe runtime system

Zakir Durumeric, James Kasten, J. Alex Halderman, Michael Bailey, Frank Li,
Nicholas Weaver, Bernhard Amann, Jethro Beekman, Mathias Payer, Vern Paxson,
"The Matter of Heartbleed", ACM IMC'14 (best paper)

Heartbleed: patching observations

● 11% of servers remained
vulnerable after 48 hours

● Patching plateaued at 4%
● Only 10% of vulnerable sites

replaced certificates
● 15% of replaced cert's used

vulnerable cryptographic keys Heartbleed vulnerable hosts

Zakir Durumeric, James Kasten, J. Alex Halderman, Michael Bailey, Frank Li,
Nicholas Weaver, Bernhard Amann, Jethro Beekman, Mathias Payer, Vern Paxson,
"The Matter of Heartbleed", ACM IMC'14 (best paper)

Heartbleed: patching observations

● 11% of servers remained
vulnerable after 48 hours

● Patching plateaued at 4%
● Only 10% of vulnerable sites

replaced certificates
● 15% of replaced cert's used

vulnerable cryptographic keys Heartbleed vulnerable hosts

Update process is slow,
incomplete, and incorrect

Memory
(Un-)safety

Memory (un-)safety: invalid dereference

Dangling pointer:
(temporal)

Out-of-bounds pointer:
(spatial)

Violation iff: pointer is read, written, or freed

char foo[40];
foo[42] = 23;

free(foo);
*foo = 23;

Memory (un-)safety: type confusion

class P {
int p_data;

};
class C: public P {
int c_data;

};
P *Pptr = new P;
C *Cptr = static_cast<C*>(Pptr);
Cptr->c_data; // Type confusion!

c_data
p_data
c_data

Two types of attack

● Control-flow hijack attack
– Execute Code

● Data-only attack
– Change some data used along the way

Let’s focus on
code execution

Control-flow hijack attack

1

32

4 4'

● Attacker modifies code pointer
– Return address on the stack

– Function pointer in C

– Object’s VTable pointer in C++

● Control-flow leaves valid graph
● Reuse existing code

– Return-oriented programming

– Jump-oriented programming

Control-Flow Hijack Attack

int vuln(int usr, int usr2){
 void *(func_ptr)();
 int *q = buf + usr;
 …
 func_ptr = &foo;
 …
 *q = usr2;
 …
 (*func_ptr)();
}

Memory

buf

func_ptr

code

1

1

2

2

3

func_ptr

qq

gadget

Status of deployed defenses

● Data Execution Prevention (DEP)
● Address Space Layout Randomization

(ASLR)
● Stack canaries
● Safe exception handlers

Memory

text

data

stack

0x4 R X

0x8?? RW-

0xf?? RW-

0x ?? -

Status of deployed defenses

● ASLR and DEP only effective in combination
● Breaking ASLR enables code reuse

– On desktops, information leaks are common

– On servers, code reuse attacks have decreased

– For clouds: CAIN attack at WOOT'15

– For OS: Dedup Est Machine at S&P’16

– For browsers: Flip Feng Shui at SEC’16

Type Safety,
Stack Integrity,

and
Control-Flow Integrity

Type Safety

class P {
int p_data;

};
class C: public P {
int c_data;

};
P *Pptr = new P;
C *Cptr = static_cast<C*>(Pptr);
// ^- Type confusion detected

p_data

Object Type

Pptr
(& of object)

P

check

Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe
“TypeSan: Practical Type Confusion Detection”. In CCS’16

Stack integrity

● Enforce dynamic restrictions on return instructions
● Protect return instructions through shadow/safe stack

A B

foo

void a() {
 foo();
}

void b() {
 foo();
}

void foo();

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, Dawn Song, R. Sekar
“Code Pointer Integrity”. In OSDI’14

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7;

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7;

Attacker may write to memory,
code ptrs. verified when used

CFI on the stack

A B

foo

void a() {
 foo();
}

void b() {
 foo();
}

void foo();

Novel
Code Reuse

Attacks

Control-Flow Bending

● Attacker-controlled execution along “valid” CFG
– Generalization of non-control-data attacks

● Each individual control-flow transfer is valid
– Execution trace may not match non-exploit case

● Circumvents static, fully-precise CFI

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross
“Control-Flow Bending”, Usenix SEC'15

CFI's limitation: statelessness

● Each state is verified without context
– Unaware of constraints between states

● Bending CF along valid states undetectable
– Search path in CFG that matches desired behavior

Weak CFI is broken

● Out of Control: Overcoming CFI
Goektas et al., Oakland '14

● ROP is still dangerous: breaking modern defenses
Carlini et al., Usenix SEC '14

● Stitching the gadgets: on the effectiveness of coarse-
grained CFI protection
Davi et al., Usenix SEC '14

● Size does matter: why using gadget-chain length to
prevent code-reuse is hard
Goektas et al., Usenix SEC '14

Weak CFI is broken

● Out of Control: Overcoming CFI
Goektas et al., Oakland '14

● ROP is still dangerous: breaking modern defenses
Carlini et al., Usenix SEC '14

● Stitching the gadgets: on the effectiveness of coarse-
grained CFI protection
Davi et al., Usenix SEC '14

● Size does matter: why using gadget-chain length to
prevent code-reuse is hard
Goektas et al., Usenix SEC '14

Microsoft's Control-Flow Guard is an
instance of a weak CFI mechanism

Strong CFI

● Precise CFG: no over-approximation
● Stack integrity (through shadow stack)
● Fully-precise static CFI: a transfer is only allowed if some

benign execution uses it

● How secure is CFI?
– With and without stack integrity

CFI, no stack integrity: ROP challenges

● Find path to system() in CFG.
● Divert control-flow along this path

– Constrained through memory vulnerability

● Control arguments to system()

What does a CFG look like?

system()

vuln()

What does a CFG look like? Really?

system()

vuln()

memcpy()

Dispatcher functions

● Frequently called
● Arguments are under attacker's control
● May overwrite their own return address

memcpy(dst, src, 8)

Caller
Stack
Frame

memcpy()

Stack
Frame
Local
Data

Return
Address

Attacker
Data

Control-Flow Bending, no stack integrity

● CFI without stack integrity is broken
– Stateless defenses insufficient for stack attacks

– Arbitrary code execution in all cases

● Attack is program-dependent, harder than w/o CFI

Remember CFI?

…
jmpl *%eax
…
call *(0xb)
…
call *(0xc)
call *4(0xc)

0xa
0xb
0xc
0xd

0xd
0xe

0x2
0xf

Indirect CF transfers Equivalence classes

Size of
a class

Existing CFI mechanisms

CFI mechanism Forward Edge Backward Edge CFB

Google IFCC ~
MS CFG ~
LLVM-CFI
MCFI/piCFI ~
Lockdown ~+

What if we have stack integrity?

● ROP no longer an option
● Attack becomes harder

– Need to find a path through virtual calls

– Resort to “restricted COOP”

● An interpreter would make attacks much simpler…
– Lets automate!

printf()-oriented programming*

● Translate program to format string
– Memory reads: %s

– Memory writes: %n

– Conditional: %.*d

● Program counter becomes format string counter
– Loops? Overwrite the format specific counter

● Turing-complete domain-specific language

* Direct fame towards Nicholas Carlini, blame to me

Ever heard of brainfuck?

● > == dataptr++
● < == dataptr--
● + == *dataptr++
● - == *datapr--
● . == putchar(*dataptr)
● , == getchar(dataptr)
● [== if (*dataptr == 0) goto ']'
●] == if (*dataptr != 0) goto '['

%1$65535d%1$.*1$d%2$hn

%1$.*1$d %2$hn

%3$.*3$d %4$hhn

%3$255d%3$.*3$d%4$hhn

%3$.*3$d%5$hn

%13$.*13$d%4$hn

%1$.*1$d%10$.*10$d%2$hn

%1$.*1$d%10$.*10$d%2$hn

void loop() {
 char* last = output;
 int* rpc = &progn[pc];

 while (*rpc != 0) {
 // fetch -- decode next instruction
 sprintf(buf, "%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%2$hn",
 rpc, (short)(&real_syms));

 // execute -- execute instruction
 sprintf(buf, *real_syms,
 ((long long int)array)&0xFFFF, &array, // 1, 2
 *array, array, output, // 3, 4, 5
 ((long long int)output)&0xFFFF, &output, // 6, 7
 &cond, &bf_CGOTO_fmt3[0], // 8, 9
 rpc[1], &rpc, 0, *input, // 10, 11, 12, 13
 ((long long int)input)&0xFFFF, &input // 14, 15
);

 // retire -- update PC
 sprintf(buf, "12345678%.*d%hn", (int)(((long long int)rpc)&0xFFFF), 0, (short*)&rpc);

 // for debug: do we need to print?
 if (output != last) { putchar(output[-1]); last = output; }
 }
}

Presenting: printbf*

● Turing complete interpreter
● Relies on format strings
● Allows you to execute “stuff”

http://github.com/HexHive/printbf

* Direct fame to Nicholas Carlini, blame to me

http://github.com/HexHive/printbf

Conclusion

Conclusion

● Low level languages are here to stay
– ... and they are full of opportunities

● Defenses require careful design
– Current defenses are broken (too weak)

– Without stack integrity they can be mitigated

● CFI makes attacks harder but is no panacea
– We need principled defenses: memory and type safety

Thank you!
Questions?

Mathias Payer (@gannimo)
http://hexhive.github.io

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

