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Software is unsafe and insecure

● Low-level languages (C/C++) trade type safety and memory 
safety for performance
– Programmer responsible for all checks

● Large set of legacy and new applications written in C / C++ 
prone to memory bugs

● Too many bugs to find and fix manually
– Protect integrity through safe runtime system
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Heartbleed: patching observations

● 11% of servers remained 
vulnerable after 48 hours

● Patching plateaued at 4%
● Only 10% of vulnerable sites 

replaced certificates
● 15% of replaced cert's used 

vulnerable cryptographic keys Heartbleed vulnerable hosts
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Update process is slow, 
incomplete, and incorrect



Memory
(Un-)safety



Memory (un-)safety: invalid dereference

Dangling pointer:
(temporal)

Out-of-bounds pointer:
(spatial)

Violation iff: pointer is read, written, or freed

char foo[40];
foo[42] = 23;

free(foo);
*foo = 23;



Memory (un-)safety: type confusion

class P {
int p_data;

};
class C: public P {
int c_data;

};
P *Pptr = new P;
C *Cptr = static_cast<C*>(Pptr);
Cptr->c_data; // Type confusion!

c_data
p_data
c_data



Two types of attack

● Control-flow hijack attack
– Execute Code

● Data-only attack
– Change some data used along the way

Let’s focus on
code execution



Control-flow hijack attack
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● Attacker modifies code pointer
– Return address on the stack

– Function pointer in C

– Object’s VTable pointer in C++

● Control-flow leaves valid graph
● Reuse existing code

– Return-oriented programming

– Jump-oriented programming



  

Control-Flow Hijack Attack

int vuln(int usr, int usr2){
  void *(func_ptr)();
  int *q = buf + usr;
  …
  func_ptr = &foo;
  …
  *q = usr2;
  …
  (*func_ptr)();
}

Memory
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Status of deployed defenses

● Data Execution Prevention (DEP)
● Address Space Layout Randomization

(ASLR)
● Stack canaries
● Safe exception handlers

Memory

text

data

stack

0x4   R X

0x8?? RW-

0xf?? RW-

0x ??  -



Status of deployed defenses

● ASLR and DEP only effective in combination
● Breaking ASLR enables code reuse

– On desktops, information leaks are common

– On servers, code reuse attacks have decreased

– For clouds: CAIN attack at WOOT'15

– For OS: Dedup Est Machine at S&P’16

– For browsers: Flip Feng Shui at SEC’16



Type Safety,
Stack Integrity,

and
Control-Flow Integrity



Type Safety

class P {
int p_data;

};
class C: public P {
int c_data;

};
P *Pptr = new P;
C *Cptr = static_cast<C*>(Pptr);
//   ^- Type confusion detected

p_data

Object Type

Pptr
(& of object)

P

check

Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe
“TypeSan: Practical Type Confusion Detection”. In CCS’16



Stack integrity

● Enforce dynamic restrictions on return instructions
● Protect return instructions through shadow/safe stack

A B

foo

void a() {
  foo();
}

void b() {
  foo();
}

void foo();

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, Dawn Song, R. Sekar
“Code Pointer Integrity”. In OSDI’14



  

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7;



  

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7;

Attacker may write to memory,
code ptrs. verified when used



CFI on the stack

A B

foo

void a() {
  foo();
}

void b() {
  foo();
}

void foo();



Novel
Code Reuse

Attacks



Control-Flow Bending

● Attacker-controlled execution along “valid” CFG
– Generalization of non-control-data attacks

● Each individual control-flow transfer is valid
– Execution trace may not match non-exploit case

● Circumvents static, fully-precise CFI

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross
“Control-Flow Bending”, Usenix SEC'15



CFI's limitation: statelessness

● Each state is verified without context
– Unaware of constraints between states

● Bending CF along valid states undetectable
– Search path in CFG that matches desired behavior



Weak CFI is broken

● Out of Control: Overcoming CFI
Goektas et al., Oakland '14

● ROP is still dangerous: breaking modern defenses
Carlini et al., Usenix SEC '14

● Stitching the gadgets: on the effectiveness of coarse-
grained CFI protection
Davi et al., Usenix SEC '14

● Size does matter: why using gadget-chain length to 
prevent code-reuse is hard
Goektas et al., Usenix SEC '14



Weak CFI is broken

● Out of Control: Overcoming CFI
Goektas et al., Oakland '14

● ROP is still dangerous: breaking modern defenses
Carlini et al., Usenix SEC '14

● Stitching the gadgets: on the effectiveness of coarse-
grained CFI protection
Davi et al., Usenix SEC '14

● Size does matter: why using gadget-chain length to 
prevent code-reuse is hard
Goektas et al., Usenix SEC '14

Microsoft's Control-Flow Guard is an
instance of a weak CFI mechanism



Strong CFI

● Precise CFG: no over-approximation
● Stack integrity (through shadow stack)
● Fully-precise static CFI: a transfer is only allowed if some 

benign execution uses it

● How secure is CFI?
– With and without stack integrity



CFI, no stack integrity: ROP challenges

● Find path to system() in CFG.
● Divert control-flow along this path

– Constrained through memory vulnerability

● Control arguments to system()



What does a CFG look like?

system()

vuln()



What does a CFG look like? Really?

system()

vuln()

memcpy()



Dispatcher functions

● Frequently called
● Arguments are under attacker's control
● May overwrite their own return address

memcpy(dst, src, 8)

Caller
Stack
Frame

memcpy()

Stack
Frame
Local
Data

Return
Address

Attacker
Data



Control-Flow Bending, no stack integrity

● CFI without stack integrity is broken
– Stateless defenses insufficient for stack attacks

– Arbitrary code execution in all cases

● Attack is program-dependent, harder than w/o CFI



  

Remember CFI?

…
jmpl *%eax
…
call *(0xb)
…
call *(0xc)
call *4(0xc)

0xa
0xb
0xc
0xd

0xd
0xe

0x2
0xf

Indirect CF transfers Equivalence classes

Size of
a class



Existing CFI mechanisms

CFI mechanism Forward Edge Backward Edge CFB

Google IFCC ~ 
MS CFG ~ 
LLVM-CFI  
MCFI/piCFI  ~
Lockdown ~+ 



What if we have stack integrity?

● ROP no longer an option
● Attack becomes harder

– Need to find a path through virtual calls

– Resort to “restricted COOP”

● An interpreter would make attacks much simpler…
– Lets automate!



printf()-oriented programming*

● Translate program to format string
– Memory reads: %s

– Memory writes: %n

– Conditional: %.*d

● Program counter becomes format string counter
– Loops? Overwrite the format specific counter

● Turing-complete domain-specific language

* Direct fame towards Nicholas Carlini, blame to me



Ever heard of brainfuck?

● > == dataptr++
● < == dataptr--
● + == *dataptr++
● - == *datapr--
● . == putchar(*dataptr)
● , == getchar(dataptr)
● [ == if (*dataptr == 0) goto ']'
● ] == if (*dataptr != 0) goto '['

%1$65535d%1$.*1$d%2$hn

%1$.*1$d %2$hn

%3$.*3$d %4$hhn

%3$255d%3$.*3$d%4$hhn

%3$.*3$d%5$hn

%13$.*13$d%4$hn

%1$.*1$d%10$.*10$d%2$hn

%1$.*1$d%10$.*10$d%2$hn



void loop() {
  char* last = output;
  int* rpc = &progn[pc];

  while (*rpc != 0) {
    // fetch -- decode next instruction
    sprintf(buf, "%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%2$hn",
      *rpc, (short*)(&real_syms));

    // execute -- execute instruction
    sprintf(buf, *real_syms,
      ((long long int)array)&0xFFFF, &array, // 1, 2
      *array, array, output, // 3, 4, 5
      ((long long int)output)&0xFFFF, &output, // 6, 7
      &cond, &bf_CGOTO_fmt3[0], // 8, 9
      rpc[1], &rpc, 0, *input, // 10, 11, 12, 13
      ((long long int)input)&0xFFFF, &input // 14, 15
      );

    // retire -- update PC
    sprintf(buf, "12345678%.*d%hn", (int)(((long long int)rpc)&0xFFFF), 0, (short*)&rpc);

    // for debug: do we need to print?
    if (output != last) { putchar(output[-1]); last = output; }
  }
}



Presenting: printbf*

● Turing complete interpreter
● Relies on format strings
● Allows you to execute “stuff”

http://github.com/HexHive/printbf

* Direct fame to Nicholas Carlini, blame to me

http://github.com/HexHive/printbf


Conclusion



Conclusion

● Low level languages are here to stay
– ... and they are full of opportunities

● Defenses require careful design
– Current defenses are broken (too weak)

– Without stack integrity they can be mitigated

● CFI makes attacks harder but is no panacea
– We need principled defenses: memory and type safety



  

Thank you! 
Questions?

Mathias Payer (@gannimo)
http://hexhive.github.io
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