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Software is unsafe and insecure

● Low-level languages (C/C++) trade type safety and memory 
safety for performance
– Programmer responsible for all checks

● Large set of legacy and new applications written in C / C++ 
prone to memory bugs

● Too many bugs to find and fix manually
– Protect integrity through safe runtime system



(c) National Nuclear Security Administration, 1953



Memory
(Un-)safety



Memory (un-)safety: invalid dereference

Dangling pointer:
(temporal)

Out-of-bounds pointer:
(spatial)

Violation iff: pointer is read, written, or freed

char foo[40];
foo[42] = 23;

free(foo);
*foo = 23;



Two types of attack

● Control-flow hijack attack
– Execute Code

● Data-only attack
– Change some data used along the way

Today, we focus on
executing code



Control-flow hijack attack
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● Attacker modifies code pointer
– Function return

– Indirect jump

– Indirect call

● Control-flow leaves valid graph
● Reuse existing code

– Return-oriented programming

– Jump-oriented programming



  

Control-Flow Hijack Attack

int vuln(int usr, int usr2){
  void *(func_ptr)();
  int *q = buf + usr;
  …
  func_ptr = &foo;
  …
  *q = usr2;
  …
  (*func_ptr)();
}
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Status of deployed defenses

● Data Execution Prevention (DEP)
● Address Space Layout Randomization

(ASLR)
● Stack canaries
● Safe exception handlers

Memory

text

data

stack

0x4?? R-X

0x8?? RW-

0xf?? RW-



Status of deployed defenses

● ASLR and DEP only effective in combination
● Breaking ASLR enables code reuse

– On desktops, information leaks are common

– On servers, code reuse attacks have decreased

– For clouds: look at CAIN ASLR attack from WOOT'15

Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross
“CAIN: Silently breaking ASLR in the cloud”, WOOT'15 / BHEU'15
http://nebelwelt.net/publications/#15WOOT

http://nebelwelt.net/publications/#15WOOT


Stack Integrity
and

Control-Flow Integrity



Stack integrity

● Enforce dynamic restrictions on return instructions
● Protect return instructions through shadow stack

A B

foo

void a() {
  foo();
}

void b() {
  foo();
}

void foo();



  

Control-Flow Integrity (CFI)

● Statically construct Control-Flow Graph
– Find set of allowed targets for each location

● Online set check

…
jmpl *%eax
…
call *(0xb)
…
call *(0xc)
call *4(0xc)

0xa
0xb
0xc
0xd

0xd
0xe

0x2
0xf



  

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7;



  

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7;

Attacker may write to memory,
code ptrs. verified when used



CFI on the stack

A B

foo

void a() {
  foo();
}

void b() {
  foo();
}

void foo();



Novel
Code Reuse

Attacks



Control-Flow Bending

● Attacker-controlled execution along “valid” CFG
– Generalization of non-control-data attacks

● Each individual control-flow transfer is valid
– Execution trace may not match non-exploit case

● Circumvents static, fully-precise CFI

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross
“Control-Flow Bending”, Usenix SEC'15
http://nebelwelt.net/publications/#15SEC

http://nebelwelt.net/publications/#15SEC


CFI's limitation: statelessness

● Each state is verified without context
– Unaware of constraints between states

● Bending CF along valid states undetectable
– Search path in CFG that matches desired behavior



Weak CFI is broken

● Out of Control: Overcoming CFI
Goektas et al., Oakland '14

● ROP is still dangerous: breaking modern defenses
Carlini et al., Usenix SEC '14

● Stitching the gadgets: on the effectiveness of coarse-
grained CFI protection
Davi et al., Usenix SEC '14

● Size does matter: why using gadget-chain length to 
prevent code-reuse is hard
Goektas et al., Usenix SEC '14



Weak CFI is broken

● Out of Control: Overcoming CFI
Goektas et al., Oakland '14

● ROP is still dangerous: breaking modern defenses
Carlini et al., Usenix SEC '14

● Stitching the gadgets: on the effectiveness of coarse-
grained CFI protection
Davi et al., Usenix SEC '14

● Size does matter: why using gadget-chain length to 
prevent code-reuse is hard
Goektas et al., Usenix SEC '14

Microsoft's Control-Flow Guard is an
instance of a weak CFI mechanism



Strong CFI

● Precise CFG: no over-approximation
● Stack integrity (through shadow stack)
● Fully-precise static CFI: a transfer is only allowed if some 

benign execution uses it

● How secure is CFI?
– With and without stack integrity



CFI, no stack integrity: ROP challenges

● Find path to system() in CFG.
● Divert control-flow along this path

– Constrained through memory vulnerability

● Control arguments to system()



What does a CFG look like?

system()

vuln()



What does a CFG look like? Really?

system()

vuln()

memcpy()



Dispatcher functions

● Frequently called
● Arguments are under attacker's control
● May overwrite their own return address

memcpy(dst, src, 8)

Caller
Stack
Frame

memcpy()

Stack
Frame
Local
Data

Return
Address

Attacker
Data



Control-Flow Bending, no stack integrity

● CFI without stack integrity is broken
– Stateless defenses insufficient for stack attacks

– Arbitrary code execution in all cases

● Attack is program-dependent, harder than w/o CFI



Counterfeit Object-Oriented Programming

● A function can be a gadget too!
class Course {
private: 

Student **students;
size_t nstudents;

public:
virtual ~Course() {

for (size_t i = 0; i < nstudents; ++i) {
students[i]->decCourseCount();

}
delete students;

}

Control length
of loop

Array with ptrs.
to vtables

Keyword
for ind. call

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, 
“Counterfeit Object-Oriented Programming”, Oakland'15.



Counterfeit Object-Oriented Programming

class Exam {
private:
  size_t scoreA, scoreB, scoreC;
public:
  char *topic; size_t score;
  virtual void updateAbsoluteScore() {
    score = scoreA + scoreB + scoreC;
  }
};
struct SimpleString {
  char *buffer; size_t len;
  virtual void set(char *s) {
    strncpy(buffer, s, len);
  }
};

Arithmetic

“memcpy”

vptr

size_t scoreA

size_t scoreB

size_t scoreC

size_t score

size_t len

char* topic

size_t score / char *buffer

char* topic / vptr



Existing CFI mechanisms

● Lockdown (DIMVA'15)
● MCFI and piCFI (PLDI'14 and CCS'15)
● Google LLVM-CFI
● Google IFCC (Usenix SEC'14)
● MS Control-Flow Guard
● Many many others



  

Remember CFI?

…
jmpl *%eax
…
call *(0xb)
…
call *(0xc)
call *4(0xc)

0xa
0xb
0xc
0xd

0xd
0xe

0x2
0xf

Indirect CF transfers Equivalence classes

Size of
a class



Forward edge precision: size of eqi classes

Median

25th percentile

75th percentile

outliers

Required



Existing CFI mechanisms

CFI mechanism Forward Edge Backward Edge CFB

IFCC ~ 
MS CFG ~ 
LLVM-CFI  
MCFI/piCFI  ~
Lockdown ~+ 



What if we have stack integrity?

● ROP no longer an option
● Attack becomes harder

– Need to find a path through virtual calls

– Resort to “restricted COOP”

● An interpreter would make attacks much simpler...



printf()-oriented programming

● Translate program to format string
– Memory reads: %s

– Memory writes: %n

– Conditional: %.*d

● Program counter becomes format string counter
– Loops? Overwrite the format specific counter

● Turing-complete domain-specific language



Ever heard of brainfuck?

● > == dataptr++
● < == dataptr--
● + == *dataptr++
● - == *datapr--
● . == putchar(*dataptr)
● , == getchar(dataptr)
● [ == if (*dataptr == 0) goto ']'
● ] == if (*dataptr != 0) goto '['

%1$65535d%1$.*1$d%2$hn

%1$.*1$d %2$hn

%3$.*3$d %4$hhn

%3$255d%3$.*3$d%4$hhn

%3$.*3$d%5$hn

%13$.*13$d%4$hn

%1$.*1$d%10$.*10$d%2$hn

%1$.*1$d%10$.*10$d%2$hn



void loop() {
  char* last = output;
  int* rpc = &progn[pc];

  while (*rpc != 0) {
    // fetch -- decode next instruction
    sprintf(buf, "%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%2$hn",
      *rpc, (short*)(&real_syms));

    // execute -- execute instruction
    sprintf(buf, *real_syms,
      ((long long int)array)&0xFFFF, &array, // 1, 2
      *array, array, output, // 3, 4, 5
      ((long long int)output)&0xFFFF, &output, // 6, 7
      &cond, &bf_CGOTO_fmt3[0], // 8, 9
      rpc[1], &rpc, 0, *input, // 10, 11, 12, 13
      ((long long int)input)&0xFFFF, &input // 14, 15
      );

    // retire -- update PC
    sprintf(buf, "12345678%.*d%hn", (int)(((long long int)rpc)&0xFFFF), 0, (short*)&rpc);

    // for debug: do we need to print?
    if (output != last) { putchar(output[-1]); last = output; }
  }
}



Introducing: printbf

● Turing complete interpreter
● Relies on format strings
● Allows you to execute stuff

http://github.com/HexHive/printbf

http://github.com/HexHive/printbf


Conclusion



Conclusion

● Low level languages are here to stay
– ... and they are full of “potential”

● Without stack integrity, defenses are broken

● Even with stack integrity we can do fun stuff
– Enjoy our Turing-complete printbf interpreter



  

Thank you! 
Questions?

Mathias Payer (@gannimo) and Nicholas Carlini
http://hexhive.github.io 

https://twitter.com/gannimo
http://hexhive.github.io/
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