

New memory corruption attacks:
why can't we have nice things?

Mathias Payer (@gannimo) and Nicholas Carlini
http://hexhive.github.io

https://twitter.com/gannimo
http://hexhive.github.io/

DR. STRANGELOVEDR. STRANGELOVE
OR: HOW I LEARNED TO STOP OR: HOW I LEARNED TO STOP
WORRYING AND LOVE THE SEGFAULTWORRYING AND LOVE THE SEGFAULT

(c) Castro Theatre and Spoke Art, 2013

Software is unsafe and insecure

● Low-level languages (C/C++) trade type safety and memory
safety for performance
– Programmer responsible for all checks

● Large set of legacy and new applications written in C / C++
prone to memory bugs

● Too many bugs to find and fix manually
– Protect integrity through safe runtime system

(c) National Nuclear Security Administration, 1953

Memory
(Un-)safety

Memory (un-)safety: invalid dereference

Dangling pointer:
(temporal)

Out-of-bounds pointer:
(spatial)

Violation iff: pointer is read, written, or freed

char foo[40];
foo[42] = 23;

free(foo);
*foo = 23;

Two types of attack

● Control-flow hijack attack
– Execute Code

● Data-only attack
– Change some data used along the way

Today, we focus on
executing code

Control-flow hijack attack

1

32

4 4'

● Attacker modifies code pointer
– Function return

– Indirect jump

– Indirect call

● Control-flow leaves valid graph
● Reuse existing code

– Return-oriented programming

– Jump-oriented programming

Control-Flow Hijack Attack

int vuln(int usr, int usr2){
 void *(func_ptr)();
 int *q = buf + usr;
 …
 func_ptr = &foo;
 …
 *q = usr2;
 …
 (*func_ptr)();
}

Memory

buf

func_ptr

code

1

1

2

2

3

func_ptr

qq

gadget

Status of deployed defenses

● Data Execution Prevention (DEP)
● Address Space Layout Randomization

(ASLR)
● Stack canaries
● Safe exception handlers

Memory

text

data

stack

0x4?? R-X

0x8?? RW-

0xf?? RW-

Status of deployed defenses

● ASLR and DEP only effective in combination
● Breaking ASLR enables code reuse

– On desktops, information leaks are common

– On servers, code reuse attacks have decreased

– For clouds: look at CAIN ASLR attack from WOOT'15

Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross
“CAIN: Silently breaking ASLR in the cloud”, WOOT'15 / BHEU'15
http://nebelwelt.net/publications/#15WOOT

http://nebelwelt.net/publications/#15WOOT

Stack Integrity
and

Control-Flow Integrity

Stack integrity

● Enforce dynamic restrictions on return instructions
● Protect return instructions through shadow stack

A B

foo

void a() {
 foo();
}

void b() {
 foo();
}

void foo();

Control-Flow Integrity (CFI)

● Statically construct Control-Flow Graph
– Find set of allowed targets for each location

● Online set check

…
jmpl *%eax
…
call *(0xb)
…
call *(0xc)
call *4(0xc)

0xa
0xb
0xc
0xd

0xd
0xe

0x2
0xf

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7;

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7;

Attacker may write to memory,
code ptrs. verified when used

CFI on the stack

A B

foo

void a() {
 foo();
}

void b() {
 foo();
}

void foo();

Novel
Code Reuse

Attacks

Control-Flow Bending

● Attacker-controlled execution along “valid” CFG
– Generalization of non-control-data attacks

● Each individual control-flow transfer is valid
– Execution trace may not match non-exploit case

● Circumvents static, fully-precise CFI

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross
“Control-Flow Bending”, Usenix SEC'15
http://nebelwelt.net/publications/#15SEC

http://nebelwelt.net/publications/#15SEC

CFI's limitation: statelessness

● Each state is verified without context
– Unaware of constraints between states

● Bending CF along valid states undetectable
– Search path in CFG that matches desired behavior

Weak CFI is broken

● Out of Control: Overcoming CFI
Goektas et al., Oakland '14

● ROP is still dangerous: breaking modern defenses
Carlini et al., Usenix SEC '14

● Stitching the gadgets: on the effectiveness of coarse-
grained CFI protection
Davi et al., Usenix SEC '14

● Size does matter: why using gadget-chain length to
prevent code-reuse is hard
Goektas et al., Usenix SEC '14

Weak CFI is broken

● Out of Control: Overcoming CFI
Goektas et al., Oakland '14

● ROP is still dangerous: breaking modern defenses
Carlini et al., Usenix SEC '14

● Stitching the gadgets: on the effectiveness of coarse-
grained CFI protection
Davi et al., Usenix SEC '14

● Size does matter: why using gadget-chain length to
prevent code-reuse is hard
Goektas et al., Usenix SEC '14

Microsoft's Control-Flow Guard is an
instance of a weak CFI mechanism

Strong CFI

● Precise CFG: no over-approximation
● Stack integrity (through shadow stack)
● Fully-precise static CFI: a transfer is only allowed if some

benign execution uses it

● How secure is CFI?
– With and without stack integrity

CFI, no stack integrity: ROP challenges

● Find path to system() in CFG.
● Divert control-flow along this path

– Constrained through memory vulnerability

● Control arguments to system()

What does a CFG look like?

system()

vuln()

What does a CFG look like? Really?

system()

vuln()

memcpy()

Dispatcher functions

● Frequently called
● Arguments are under attacker's control
● May overwrite their own return address

memcpy(dst, src, 8)

Caller
Stack
Frame

memcpy()

Stack
Frame
Local
Data

Return
Address

Attacker
Data

Control-Flow Bending, no stack integrity

● CFI without stack integrity is broken
– Stateless defenses insufficient for stack attacks

– Arbitrary code execution in all cases

● Attack is program-dependent, harder than w/o CFI

Counterfeit Object-Oriented Programming

● A function can be a gadget too!
class Course {
private:

Student **students;
size_t nstudents;

public:
virtual ~Course() {

for (size_t i = 0; i < nstudents; ++i) {
students[i]->decCourseCount();

}
delete students;

}

Control length
of loop

Array with ptrs.
to vtables

Keyword
for ind. call

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz,
“Counterfeit Object-Oriented Programming”, Oakland'15.

Counterfeit Object-Oriented Programming

class Exam {
private:
 size_t scoreA, scoreB, scoreC;
public:
 char *topic; size_t score;
 virtual void updateAbsoluteScore() {
 score = scoreA + scoreB + scoreC;
 }
};
struct SimpleString {
 char *buffer; size_t len;
 virtual void set(char *s) {
 strncpy(buffer, s, len);
 }
};

Arithmetic

“memcpy”

vptr

size_t scoreA

size_t scoreB

size_t scoreC

size_t score

size_t len

char* topic

size_t score / char *buffer

char* topic / vptr

Existing CFI mechanisms

● Lockdown (DIMVA'15)
● MCFI and piCFI (PLDI'14 and CCS'15)
● Google LLVM-CFI
● Google IFCC (Usenix SEC'14)
● MS Control-Flow Guard
● Many many others

Remember CFI?

…
jmpl *%eax
…
call *(0xb)
…
call *(0xc)
call *4(0xc)

0xa
0xb
0xc
0xd

0xd
0xe

0x2
0xf

Indirect CF transfers Equivalence classes

Size of
a class

Forward edge precision: size of eqi classes

Median

25th percentile

75th percentile

outliers

Required

Existing CFI mechanisms

CFI mechanism Forward Edge Backward Edge CFB

IFCC ~ 
MS CFG ~ 
LLVM-CFI  
MCFI/piCFI  ~
Lockdown ~+ 

What if we have stack integrity?

● ROP no longer an option
● Attack becomes harder

– Need to find a path through virtual calls

– Resort to “restricted COOP”

● An interpreter would make attacks much simpler...

printf()-oriented programming

● Translate program to format string
– Memory reads: %s

– Memory writes: %n

– Conditional: %.*d

● Program counter becomes format string counter
– Loops? Overwrite the format specific counter

● Turing-complete domain-specific language

Ever heard of brainfuck?

● > == dataptr++
● < == dataptr--
● + == *dataptr++
● - == *datapr--
● . == putchar(*dataptr)
● , == getchar(dataptr)
● [== if (*dataptr == 0) goto ']'
●] == if (*dataptr != 0) goto '['

%1$65535d%1$.*1$d%2$hn

%1$.*1$d %2$hn

%3$.*3$d %4$hhn

%3$255d%3$.*3$d%4$hhn

%3$.*3$d%5$hn

%13$.*13$d%4$hn

%1$.*1$d%10$.*10$d%2$hn

%1$.*1$d%10$.*10$d%2$hn

void loop() {
 char* last = output;
 int* rpc = &progn[pc];

 while (*rpc != 0) {
 // fetch -- decode next instruction
 sprintf(buf, "%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%2$hn",
 rpc, (short)(&real_syms));

 // execute -- execute instruction
 sprintf(buf, *real_syms,
 ((long long int)array)&0xFFFF, &array, // 1, 2
 *array, array, output, // 3, 4, 5
 ((long long int)output)&0xFFFF, &output, // 6, 7
 &cond, &bf_CGOTO_fmt3[0], // 8, 9
 rpc[1], &rpc, 0, *input, // 10, 11, 12, 13
 ((long long int)input)&0xFFFF, &input // 14, 15
);

 // retire -- update PC
 sprintf(buf, "12345678%.*d%hn", (int)(((long long int)rpc)&0xFFFF), 0, (short*)&rpc);

 // for debug: do we need to print?
 if (output != last) { putchar(output[-1]); last = output; }
 }
}

Introducing: printbf

● Turing complete interpreter
● Relies on format strings
● Allows you to execute stuff

http://github.com/HexHive/printbf

http://github.com/HexHive/printbf

Conclusion

Conclusion

● Low level languages are here to stay
– ... and they are full of “potential”

● Without stack integrity, defenses are broken

● Even with stack integrity we can do fun stuff
– Enjoy our Turing-complete printbf interpreter

Thank you!
Questions?

Mathias Payer (@gannimo) and Nicholas Carlini
http://hexhive.github.io

https://twitter.com/gannimo
http://hexhive.github.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

