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Abstract: Similarity metrics, e.g., signatures as
used by anti-virus products, are the dominant tech-
nique to detect if a given binary is malware. The
underlying assumption of this approach is that all
instances of a malware (or even malware family) will
be similar to each other.

Software diversification is a probabilistic technique
that uses code and data randomization and expres-
siveness in the target instruction set to generate large
amounts of functionally equivalent but different bina-
ries. Malware diversity builds on software diversity
and ensures that any two diversified instances of the
same malware have low similarity (according to a
set of similarity metrics). An LLVM-based proto-
type implementation diversifies both code and data
of binaries and our evaluation shows that signatures
based on similarity only match one or few instances
in a pool of diversified binaries generated from the
same source code.

1 Introduction

The malware (malicious software) landscape is con-
stantly evolving. There are no longer tens of thou-
sands of different malware threats that are currently
active but only few different malware families that
often share common source code. Current malware
detection engines (malware scanners and anti-virus
engines) use a combination of signatures, partial
matching, regular expressions, and heuristics to clas-
sify binaries as either malicious or benign. Malware
therefore faces a detection problem on current sys-
tems due to shared source code and a low number of
currently active malware families.

Current malware addresses the detection problem
using packers [41,51] (small pieces of code that ob-
fuscate the actual malware code from analysis), semi-
automatically generating new binaries every couple
of hours. Even Symantec, one of the top anti-virus
companies, declares that signature-based similarity
metrics are no longer effective against top threats [12].
Packers usually work on binaries, however, and are
therefore limited in the expressiveness of the changes
due to missing high level information.

Software diversity [7,9,11,16,17,20–22,28,35,43] on
the other hand uses a compiler to produce function-
ally equivalent binaries that differ substantially at
the implementation level. Software diversity provides
protection with quantifiable probability from software
exploits that rely on a known data or code layout.
Software diversity is also used to thwart reverse-
engineering and tampering; up until this point, soft-
ware diversity has been a defensive capability.

Malware diversity [44] tailors software diversifi-
cation to the needs of malware authors. Malware
diversification ensures that two diversified binaries
share neither large amounts of data nor common
instruction sequences. Regular software diversifica-
tion (i) typically diversifies code regions while data
regions remain constant, (ii) avoids performance de-
grading changes, and (iii) is deterministic, i.e., the
diversification is reproducible. Malware diversifica-
tion shifts these design decisions: the diversification
engine diversifies both code and data (otherwise sig-
natures could match data), maximizes the (byte-wise
and structural) differences, and minimizes the largest
common subsequence of shared code/data. Repro-
ducibility is only helpful to report and troubleshoot
bugs in deployed software; this is not of concern to
malware authors who can only reliably test malware
prior to launching it.

Obfuscation [9] is closely related to software diver-
sity as both techniques rely on randomizing transfor-
mations. Obfuscating transformations protect bina-
ries against reverse engineering by hiding the imple-
mented algorithm. Malware diversity is complemen-
tary to obfuscation as it modifies the computation
of every single instance but debugging and reverse
engineering of individual instances are not affected.

Our malware diversification engine extends the
LLVM-based multicompiler [22, 44] and changes the
code of the application by replacing instructions,
instruction reordering, garbage insertion, and several
types of control-flow randomization like reordering
basic blocks. To change the data of an application,
the malware diversification engine uses different data
encodings.
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The contributions of this paper are as follows:

1. a description of malware diversity, a technique
that extends software diversification to create
malware instances with low similarity to each
other;

2. a detailed evaluation of a prototype implementa-
tion demonstrating the effectiveness of malware
diversification along several similarity metrics.

2 Background and related work

Malware diversity extends software diversity by com-
bining code and data diversity (to obfuscate data
regions along with the code regions). Malware diver-
sification is effective when malware detection mech-
anisms fail to identify two diversified binaries using
the same signature. Put differently, we can mea-
sure the effectiveness by finding common features
that are present in both diversified malware samples
(according to some similarity metric).

2.1 Malware detection and evasion

Current malware scanners combine different match-
ing techniques to detect malicious code. Most sys-
tems use a combination of different matching tech-
niques like hash based matching (using a crypto-
graphic hash for the entire binary or individual sec-
tions of the binary), sequence based matching (if two
binaries share a common sequence they are consid-
ered equal), expression based matching (if the regular
expression matches both binaries they are considered
equal), and heuristics based matching (if a binary
matches a given heuristic it is considered malicious).
This list is based on ClamAV [29], a well-known
open-source malware scanner; other scanners rely on
similar techniques. According to Huang and Tsai [23]
the average matched pattern length is longer than 25
bytes and only 43 out of more than 83,000 signatures
are shorter than 10 bytes. The likelihood of false
positives decreases with increased matched pattern
length.

Several new approaches for both malware detection
and malware matching have been proposed to address
the limitations of the existing signature-based tech-
niques. Approaches like malware normalization [6]
normalize a binary to a common form but are limited
to predefined obfuscation patterns and cannot undo
high-level transformations like register reallocation.

Heuristics based malware detection tries to match
the behavior of a binary to a specific sequence of
actions (such as system or library calls) when ex-
ecuted in a sandbox. Malware uses subtle differ-
ences between the sandbox and a real system [5,18]
to detect virtualized platforms [14, 42, 46, 48] and

stops execution. Approaches that detect sandbox
evasion [2, 14, 24, 26, 30, 34, 36] are useful tools for
analysts but usually too heavyweight to be used on
a consumer’s machine.

2.2 Packers and binary polymorphism

A packer [25, 37, 39, 45, 47] (or crypter) is an appli-
cation that obfuscates a malicious application with
the intention to hide it from malware scanners or
to make debugging and reverse engineering harder.
Packers are historically based on encryption but
moved to oligomoprhic, polymorphic, and metamor-
phic transformations [40,53]. Botnet operators can
strengthen polymorphic transformations by random-
izing them on a per-machine basis, for example by
using perl scripts to use non-standard transforma-
tion algorithms [1].

Since packers are complex to construct, many mal-
ware authors reuse existing solutions. Attackers are
increasingly shifting to less common packers, cus-
tomized packers, and obfuscating packers [4]. How-
ever, anti-virus scanners can still detect packed bi-
naries due to their special characteristics. These
include “weird” section names, sections with high
Shannon’s entropy due to compression, few imported
functions, and unusual entry code [45, 54]. Finally,
many anti-virus scanners can even unpack and scan
the payloads of known packers [25,37,47], allowing
the use of previously discussed detection techniques.

2.3 Software diversification

Software diversification [7,9,11,16,17,20–22,28,35,43]
is a promising technique. Diversity can be used
to (i) increase the resilience of software against at-
tacks [7,11,16,17,19–22,28,35,43], to (ii) hide stegano-
graphic messages in binaries [13], and to (iii) protect
software against tampering [8]. Software diversifica-
tion constructs functionally equivalent programs that
differ in their code and/or data layout. A diversifica-
tion engine uses several (compiler) techniques to ran-
domize the code and data comprising an application:
(i) instruction replacement and reordering, (ii) vari-
able substitution, (iii) register reordering, (iv) control
flow changes, (v) adding side-effect free instructions,
(vi) instruction set randomization [3, 27,50,55], (vii)
instruction stitching [38], or (viii) covert computa-
tion [49]. Larsen et al. [32] survey the area of auto-
mated software diversity in greater detail.

3 Malware diversification

Malware diversification [44] is a form of software
diversification that focuses on avoiding similarity-
based detection by malware scanners. To this end,
malware diversity modifies code and data regions of
binaries. As a result, malware analysts are unable
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to generate a signature that matches more than few
instances of a malware, if any two binaries only share
few instructions at the same offsets, share no common
data, and have dissimilar control flow graphs. A
notable difference to other software diversification
techniques is that static data must be diversified
alongside code and static data (otherwise a signature
would just match the static data).

Code diversification for malware builds on existing
software diversification mechanisms like instruction
replacement, instruction reordering, register reorder-
ing, and changing control flow by splitting and re-
ordering basic blocks, inlining, outlining, and adding
opaque predicates. Malware diversification configures
software diversification to maximize diversity in the
generated code and to minimize similarity between
multiple diversified binaries.

Data diversification changes the encoding of static
data in the binary. Due to limited knowledge of the
structure of data, malware diversity resorts to a form
of obfuscation [9] to hide the actual static data. Our
malware diversification engine uses a simple encoding
scheme that is applied to static data during compi-
lation. All static data is encoded with a random
key and simple arithmetic operations (e.g., xor) de-
code the data at runtime. The decoding function is
diversified along with all other code.

The data diversification presented here is only a
simple technique that can be strengthened, e.g., by
encrypting the data. Also, most programs have little
static data compared to the amount of code. Note
that malware diversification does not result in bi-
naries with the same special properties that makes
it easy for anti-virus software to detect packers (cf.
Section 2.2)—rather, the resulting binaries look like
variations of benign programs.

We implemented a simple malware diversification
engine on top of the existing multicompiler [22,44]
that extends the LLVM [33] compilation framework
version 3.4. The compiler is organized as a sequence
of passes which transform the instruction stream. By
modifying the existing compiler transformations and
adding new ones, we enable malware diversification.
Our prototype currently does not use runtime data
structure diversification [35].

Unlike traditional compiler optimizations that
choose whether to transform the code or not based on
program analysis, heuristics, and profile feedback, our
diversifying transformations use a random number
generator to “flip a coin” at every opportunity to di-
versify. We perform the following forms of diversifica-
tion: (i) instruction replacement, randomly swapping
mov and lea instructions, (ii) instruction reordering,
(iii) register reordering, (iv) nop and garbage instruc-

tion insertion, (v) control flow randomization and
randomizing the layout of basic blocks, and (vi) static
data obfuscation. The resulting compiled binary is
stripped to remove all symbol names (variable names
and function names) in the final diversified binary.

Not only are there several other techniques that we
could add to our diversification engine (cf. Section
2.3), the diversity generated by each of the existing
passes could also be increased. Consequently, we be-
lieve that malware writers will not find it difficult to
replicate our approach. The current implementation
targets the IA32 ISA but the concept is portable to
any instruction set and operating system combina-
tion.

4 Evaluation

This section evaluates the prototype implementation
of our malware diversification engine. Using our
prototype implementation and a set of programs
we produce 10 diversified instances for each binary
and evaluate the similarity between different binaries
according to a set of metrics. Unfortunately, a lot of
Windows malware is compiled using Visual Studio
using the Microsoft C/C++ compiler. These sources
are often not compatible to Clang/LLVM due to
Microsoft specific intrinsics in system C++ headers.
All benchmarks are executed on an Intel Core i3-3770
CPU with 16GB RAM on Debian 7.1 using the Linux
3.6.1 kernel.

We use the following applications: all C/C++ ap-
plications of the SPEC CPU2006 benchmarks, kback-
door (a simple Windows malware), a simple port
scanner, pwdump (a Windows password recovery tool
for LM and NTLM hashes), and mimikatz (a Win-
dows password recovery tool that targets lsass.exe).
We successfully compiled these programs using our
diversifying compiler. Some of these programs are
very small: the simple port scanner and mimikatz

are below 10KB, pwdump and kbackdoor are below
75KB. Only nmap can be considered a “large” bi-
nary with 3.4MB. The small size makes is harder for
the diversifying compiler to produce a highly diverse
population of binaries.

4.1 Common subsequences

Malware matching relies on signatures: common sub-
sequences that classify the malware uniquely (see
Section 2.1). Common subsequences that are present
in many (or all) diversified instances are candidates
for signatures. We search all instances for common
subsequences longer than 10 bytes, resulting in an
over-approximation of all possible signatures (e.g., du-
plicate code, register spill code, instruction sequences
that call library routines with common parameters,
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Figure 1: List of common subsequences for SPEC CPU2006 benchmarks (log scale).

or function prologues and epilogues result in many
shared substrings but are often not usable as signa-
tures).

As indicated by Huang and Tsai [23] the average
signature is longer than 25 bytes; shorter signatures
are not unique to the malware and lead to a high
number of false positives. Figure 1 shows common
substrings for diversified versions of SPEC bench-
marks shared among a set of 2, 3, 4, or 5 diversified
versions. The figure highlights two interesting re-
sults: (i) the number of shared subsequences of a
given length for a benchmark is lower the more di-
versified versions are compared (i.e., there are less
shared substrings between three diversified binaries
than between two) and (ii) the number of shared sub-
strings drops logarithmically with increasing length
of the substrings.

The comparison shows that most common se-
quences are between 10 bytes (10 bytes is the cutoff
length) and 20 bytes of length. Most of these short se-
quences are function epilogues and nop sleds to align
the next function to a 16 byte address or nop chains
before a function prologue. The number of common
subsequences drops drastically with increasing length;
only very few subsequences are longer than 30 bytes.
This comparison shows the effectiveness of diversifi-
cation to counter common subsequences in binaries:
two different benchmarks can have higher similarity

than three diversified binaries.
We manually looked through the identified sub-

sequences and classified them into one of the fol-
lowing categories: (i) 10 to 15 byte nop sleds to,
e.g., align functions to 16 byte offsets, (ii) function
call sequences, pushing static arguments or argu-
ments at specific stack offsets, (iii) mov sequences
that load/store memory into registers, e.g., to ini-
tialize structures, (iv) static start code added by the
compiler (e.g., the function that executes before main
is called), and (v) potential signatures. We found
that there are only few potential signature candidates
and all of them use registers where register reordering
will introduce diversity for larger sets of binaries.

4.2 Instruction frequencies and n-grams

This similarity metric groups either individual in-
structions or instruction mnemonics of a binary, re-
moving register information and memory access infor-
mation (e.g., mov %eax, %ebx and mov %ecx, %eax

share the same instruction mnemonic). This his-
togram can be used as a fingerprint of the malware.
We define the similarity measure S between two bi-
naries bin1 and bin2 as follows:

freq(mnem, B) =
mnemtotal(B)

instrstotal(B)

S = 1−
∑

∀i∈instr

|freq(i,bin1)− freq(i,bin2)|2

2
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The frequency of one instruction (or mnemonic)
is the number of times this instruction is used in
the binary divided by the total number of instruc-
tions. A table of frequencies for each instruction is
the histogram of a binary. The similarity between
two binaries is defined as the sum of all absolute
squared differences between each mnemonic frequen-
cies. Similarity is a natural number between 1 (every
mnemonic occurs an equal number of times in both
binaries) and 0 (the two binaries share no instruction
mnemonics).

In our experiments with the SPEC CPU2006
benchmarks we found that such simple fingerprints
(both instruction and mnemonic based similarity)
are not significant enough to distinguish diversified
binaries of the same program from other programs
with high confidence. For many benchmarks the sim-
ilarity between two different benchmarks is as high
as the similarity between two diversified versions of
the same benchmark. An interesting observation of
this simple fingerprinting experiment is that different
programs with different functionality have very high
similarity. Only few instructions differ overall.

A straight-forward extension of instruction frequen-
cies are n-gram frequencies where n instructions are
bundled together into one class (a 2-gram instruc-
tion sequence would be, e.g., a mov followed by a
pop). The simple instruction frequency defined above
represents the 1-gram frequency. We evaluated the
n-gram frequencies for the SPEC benchmarks for
n ∈ {2, 3, 4, 5} and found similar results to n = 1:
n-gram similarity is not significant enough to match
diversified versions of the same binary. Actually,
n-grams offer slightly lower similarity between diver-
sified versions for n > 1 than for n = 1.

4.3 Jaccard similarity

Following the results from the naive malware finger-
printing in the previous section we refine our sim-
ilarity metric and use the Jaccard Similarity (JS)
coefficient to compare two binaries.

JS is a statistical metric used to compare the sim-
ilarity and diversity of two sample sets by dividing
the size of the intersection of the two sets with the
size of the union of the two sets:

JS(A,B) =
|A ∩B|
|A ∪B|

For each binary we construct a set of instruction
frequencies, i.e., we count for each instruction type
how many times it is used in the binary and we then
calculate the JS based on these two sets.

The JS effectively highlights differences between
sets in terms of instruction frequences or instuction

kbackdoor mimikatz pwdump nmap sps

kbackdoor 0.68 0.27 0.29 0.43 0.28
mimikatz 0.68 0.29 0.28 0.3
pwdump 0.8 0.27 0.28
nmap 0.71 0.28
sps 0.77

Table 2: Jaccard similarity for our malware set with
themselves and with each other. Higher values indi-
cate higher similarity.

types. Two binaries that are exactly the same have a
JS of 1 while binaries that share no mnemonics with
the same count of instructions have a JS of 0.

Table 1 shows the JS coefficient measurements of
diversified versions of all C/C++ SPEC CPU2006
benchmarks. Each benchmark is diversified 3 times.
If the benchmark is compared with itself then we
report the average JS of all three diversified bina-
ries between each other (e.g., for bin1, bin2, bin3
we report the average of bin1-bin2, bin2-bin3, and
bin1-bin3). If two different benchmarks are com-
pared then we report the average of all 9 individual
JS between each diversified version of the first and
second benchmark. JS is somewhat effective: some
diversified SPEC benchmarks have a higher similar-
ity with diversified copies of themselves compared
to other diversified benchmarks. Some benchmarks
(lbm, libquantum, and milc) have similarity with
themselves of almost 0.5 or higher. These bench-
marks are identifiable due to specific floating point
instructions. Other benchmarks that mostly execute
integer instructions are hard to identify as the sim-
ilarity between different diversified binaries is close
to (or even lower) than other benchmarks.

Table 2 shows the JS similarity for our set of mal-
ware programs. Due to the small size of these pro-
grams and the single purpose the JS similarity can be
used to successfully identify diversified versions. For
the two larger programs (kbackdoor and nmap) the
difference between the JS similarity for diversified
binaries and the JS similarity for different binaries
is smaller than for the other benchmarks due to the
additional functionality in these programs.

Overall we can conclude that JS is effective in iden-
tifying diversified binaries of some (smaller) bench-
marks with particular instruction sequences. On the
other hand JS cannot be used as a general approach
to identify any diversified binary or more complex
program. Especially as the sample set of benign
binaries grows larger it will be hard to get enough
confidence to identify diversified versions of a piece
of malware relative to all the benign fingerprints.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Xalan (1) 0.81 0.34 0.13 0.25 0.34 0.11 0.33 0.12 0.13 0.13 0.12 0.11 0.33 0.34 0.33 0.33 0.13 0.33 0.11
astar (2) 1.00 0.15 0.24 0.34 0.12 0.33 0.11 0.13 0.13 0.14 0.13 0.32 0.34 0.32 0.33 0.13 0.33 0.12
bzip2 (3) 0.38 0.24 0.34 0.11 0.34 0.12 0.14 0.15 0.14 0.12 0.32 0.34 0.33 0.33 0.14 0.34 0.12
dealII (4) 0.62 0.33 0.11 0.33 0.11 0.13 0.13 0.12 0.11 0.32 0.34 0.33 0.34 0.13 0.34 0.12

gcc (5) 1.00 0.12 0.33 0.11 0.14 0.13 0.12 0.12 0.32 0.33 0.33 0.33 0.13 0.34 0.11
gobmk (6) 0.33 0.34 0.12 0.13 0.14 0.12 0.11 0.32 0.33 0.33 0.34 0.13 0.34 0.12
h264ref (7) 1.00 0.12 0.13 0.13 0.12 0.11 0.32 0.35 0.35 0.34 0.12 0.33 0.12
hmmer (8) 0.33 0.13 0.13 0.12 0.12 0.32 0.34 0.32 0.34 0.13 0.34 0.12

lbm (9) 0.39 0.13 0.13 0.11 0.32 0.33 0.33 0.33 0.14 0.33 0.12
libquantum (10) 0.38 0.13 0.12 0.32 0.34 0.33 0.33 0.14 0.33 0.12

mcf (11) 0.36 0.12 0.32 0.33 0.32 0.33 0.13 0.33 0.12
milc (12) 0.33 0.33 0.33 0.32 0.33 0.13 0.33 0.12

namd (13) 0.96 0.34 0.32 0.33 0.13 0.34 0.11
omnetpp (14) 0.99 0.34 0.33 0.14 0.33 0.12
perlbench (15) 0.97 0.33 0.12 0.33 0.12
porvray (16) 1.00 0.13 0.34 0.12

sjeng (17) 0.37 0.33 0.12
soplex (18) 0.99 0.12
sphinx (19) 0.34

Table 1: Jaccard similarity for all C/C++ SPEC benchmarks with themselves and with each other.

As a potential countermeasure malware diversity
can decrease the JS by adding additional garbage
instructions alongside the diversified instructions. At-
tackers can deliberately choose the type and number
of garbage instructions to minimize the JS score as
described by De Sutter et al. [52]. Such a scheme
distorts the fingerprint of a given binary and lowers
the utility of the JS metric. The implementation of
this additional distortion tactic is left as future work.

4.4 Graph based similarity

Bindiff is a plugin for the Interactive DisAssembler
(IDA) that compares two binaries and evaluates their
structural similarity based on a set of graph based
matching techniques. Bindiff works by recovering
and comparing approximations of the actual control-
flow and call graphs of two diversified binaries. The
core algorithm is described in the original bindiff
paper [15]. Since bindiff is a commercial tool, now
developed by Google, we expect substantial improve-
ments have been made in the interim.

Due to the graph-based comparision approach, bin-
diff is unaffected by those of our diversification tech-
niques that leave the flow of control unaffected.

Table 3 shows the similarity of a subset of the
SPEC benchmarks and our malware set. When com-
paring diversified versions of the same program we
use a set of 5 diversified versions and report the low-
est similarity in this set. In our tests, bindiff showed
similar similarity across diversified versions.

In general, bindiff achieves a higher similarity than
the Jaccard similarity due to the combination of

multiple different matching algorithms (including
some graph-based matching). On the other hand
even bindiff cannot detect very high similarity (the
maximum similarity is 53.8%). Bindiff-like similarity
metrics can be used to defeat diversity but at the
price of additional manual analysis; it takes several
minutes to analyze a pair of binaries by hand using
IDA Pro and bindiff, resulting in the reported low
similarity numbers.

We identified function calls to system libraries (e.g.
libc) as a major source of structural information
that assisted bindiff in computing similarity. We plan
to substantially extend our set of transformations
that add structural diversity to binaries. In partic-
ular, our experiments indicate that calling library
functions through randomly generated wrapper func-
tions substantially affects similarities reported by
bindiff. Coppens et al. [10] studied structural trans-
formations that defeat bindiff to protect software
patches against reverse engineering; we can benefit
from this catalog. An additional, orthogonal diversifi-
cation technique weaves a benign application into the
diversified malware and interleaves the instruction
stream of both programs using unused resources in
the malicious program to execute additional super-
fluous computation.

5 Discussion

Diversity reduces the similarity between different
instances of a binary enough to disable direct,
similarity-based matching. Malware diversification
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

astar (1) 0.432 0.118 0.064 0.067 0.052 0.085 0.109 0.085 0.128 0.051 0.109 0.040 0.104 0.086
bzip2 (2) 0.310 0.046 0.050 0.042 0.112 0.099 0.085 0.095 0.048 0.084 0.049 0.107 0.074

h264ref (3) 0.363 0.109 0.012 0.026 0.048 0.023 0.089 0.018 0.055 0.014 0.046 0.105
hmmer (4) 0.396 0.010 0.027 0.048 0.025 0.093 0.020 0.056 0.023 0.052 0.126

kbackdoor (5) 0.377 0.076 0.065 0.090 0.028 0.311 0.037 0.359 0.037 0.025
lbm (6) 0.440 0.115 0.244 0.062 0.139 0.090 0.107 0.098 0.037

libquantum (7) 0.394 0.103 0.105 0.070 0.108 0.067 0.099 0.083
mcf (8) 0.331 0.056 0.130 0.071 0.141 0.080 0.035
milc (9) 0.381 0.034 0.109 0.033 0.103 0.110

mimikatz (10) 0.502 0.060 0.413 0.048 0.027
namd (11) 0.538 0.043 0.101 0.074

pwdump (12) 0.482 0.046 0.022
sjeng (13) 0.343 0.073

sphinx (14) 0.402

Table 3: Similarity of diversified versions according to bindiff.

can use existing degrees of freedom in the compilation
process and the resulting binaries to adapt to newly
proposed counter measures and use additional diver-
sification (or garbage insertion). This situation will
result in yet another security arms race between at-
tackers and defenders until either the diversity in the
compilation process is exhausted (which is unlikely)
or malware diversity will circumvent all detection
mechanisms.

A possible countermeasure is a canonicalization of
diversified binaries that undoes individual diversifi-
cations. In case of nop insertion, we recognize that
stripping all nops from a binary1 does not produce
the original binary before diversification. The rea-
son being that we cannot distinguish between nops
inserted during diversifications and nops inserted for
other purposes (e.g., alignment). However, stripping
out nops leaves us with a “canonical” version of the
binary in the sense that all similar binaries diversi-
fied with nop insertion result in the same canonical
binary. A similar argument holds for instruction re-
placement, instruction reordering and register assign-
ment reordering. In case of instruction reordering, we
can canonicalize the binary by computing instruction
histograms (using only instruction mnemonics in the
presence of register assignment reordering) and then
match up basic blocks using the control flow graph.

In general, we note that the relationship between
diversified and canonicalized binaries is not bijective;
that two diversified binaries map to the same canon-
ical representation makes it likely, but not certain,
that they share the same source code. Furthermore,
reordering more code features (registers, instructions,
basic blocks, functions) increases the likelihood of

1Our discussion relies on disassembly of malware which
often employs anti-disassembly techniques. We consider this
an orthogonal concern and refer to other solutions, e.g. [31].

two, distinct programs having the same canonical rep-
resentation. Even though this makes false positives
a potential concern, we expect that a diversification-
aware matching strategy based on canonicalization
is more accurate than any diversification-oblivious
attempt at classifying binaries. On the other hand,
randomly inserting instruction sequences from be-
nign applications reduces our ability to compute a
canonical version of binaries. We plan to evaluate
this type of defense as future work.

6 Conclusion

Malware detection engines rely on effective and ef-
ficient similarity metrics to classify binaries as ma-
licious or benign. Malware diversity uses software
diversity to break this assumption and randomly di-
versifies both code and data of programs. Similarity-
based metrics are no longer effective due to the vari-
ations in the binary layout; our experiments confirm
that malware diversity results in very short common
subsequences and breaks other similarity metrics as
well. The structural metrics used by bindiff, on the
other hand, are not efficient to compute.

Malware diversity enables a new class of malware
that generates a virtually unlimited number of unique
malware instances. Our experiments and the discus-
sion of protective measurments show that malware
diversity is powerful enough to counter new detection
mechanisms by exploiting additional opportunities
for diversification.
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[31] Krügel, C., Robertson, W. K., Valeur, F., and Vi-
gna, G. Static disassembly of obfuscated binaries. In
USENIX Security Symposium (2004), USENIX, pp. 255–
270.

[32] Larsen, P., Homescu, A., Brunthaler, S., and Franz,
M. Sok: Automated software diversity. In IEEE Sympo-
sium on Security and Privacy (2014).

[33] Lattner, C., and Adve, V. LLVM: A compilation
framework for lifelong program analysis & transformation.
In CGO’04: Proc. 2004 Int. Symp. Code Generation and
Optimization (2004).

[34] Lau, B., and Svajcer, V. Measuring virtual machine de-
tection in malware using dsd tracer. Journal in Computer
Virology (2010), 181–195.

[35] Lin, Z., Riley, R. D., and Xu, D. Polymorphing soft-
ware by randomizing data structure layout. In Proceed-
ings of the 6th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment
(Berlin, Heidelberg, 2009), DIMVA ’09, Springer-Verlag,
pp. 107–126.

8

http://www.reddit.com/r/IAmA/comments/sq7cy/iama_a_malware_coder_and_botnet_operator_ama/
http://www.reddit.com/r/IAmA/comments/sq7cy/iama_a_malware_coder_and_botnet_operator_ama/
http://research.pandasecurity.com/packer-revolution
http://research.pandasecurity.com/packer-revolution
http://online.wsj.com/news/articles/SB10001424052702303417104579542140235850578
http://online.wsj.com/news/articles/SB10001424052702303417104579542140235850578
http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://clamav.net
http://clamav.net


[36] Lindorfer, M., Kolbitsch, C., and Milani Com-
paretti, P. Detecting Environment-Sensitive Malware.
In Recent Advances in Intrusion Detection (RAID) Sym-
posium (2011).

[37] Martignoni, L., Christodorescu, M., and Jha, S.
Omniunpack: Fast, generic, and safe unpacking of mal-
ware. In In Proceedings of the Annual Computer Security
Applications Conference (ACSAC (2007).

[38] Mohan, V., and Hamlen, K. W. Frankenstein: Stitch-
ing malware from benign binaries. In WOOT (2012),
E. Bursztein and T. Dullien, Eds., USENIX Association,
pp. 77–84.

[39] Oberheide, J., Bailey, M., and Jahanian, F. PolyPack:
an automated online packing service for optimal antivirus
evasion. In Proceedings of the 3rd USENIX conference
on Offensive technologies (2009), WOOT’09.

[40] O’Kane, P., Sezer, S., and McLaughlin, K. Obfusca-
tion: The Hidden Malware. IEEE Security & Privacy 9,
5 (2011), 41–47.

[41] Oreans Technologies. Themida advanced windows
software protection system, 2013. http://www.oreans.
com/themida.php.

[42] Paleari, R., Martignoni, L., Fresi, G., and Bruschi,
R. D. A fistful of red-pills: How to automatically generate
procedures to detect CPU emulators. In WOOT’09: Proc.
USENIX Workshop on Offensive Technologies (2009).

[43] Pappas, V., Polychronakis, M., and Keromytis, A. D.
Smashing the gadgets: Hindering return-oriented pro-
gramming using in-place code randomization. In IEEE
Symposium on Security and Privacy (2012), pp. 601–615.

[44] Payer, M. Embracing the New Threat: Towards Auto-
matically Self-Diversifying Malware. https://nebelwelt.
net/publications/14SYSCAN/, 2014.

[45] Perdisci, R., Lanzi, A., and Lee, W. Classification of
packed executables for accurate computer virus detection.
Pattern Recogn. Lett. 29, 14 (Oct. 2008).
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