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Abstract
Control-data attacks are a well known attack vector; these
attacks either inject new code into running applications or
reuse existing code in an unintended way to execute their
malicious payload.

Current software systems are protected against control-
data attacks using numerous mechanisms like Data Execu-
tion Prevention (DEP), stack canaries, and Address Space
Layout Randomization (ASLR). ASLR turns deterministic
attacks into probabilistic attacks and reduces the probabil-
ity of a successful attack. Unfortunately, the current ASLR
implementation for Linux leaves some memory regions non-
randomized. These static memory regions can be used to ex-
ploit applications that have ASLR, DEP, and stack canaries
enabled.

Format string exploits are an often overlooked attack vec-
tor that enables attacker-controlled memory writes in an ap-
plication. A format string bug exists if a user-supplied string
is passed as a first argument to any printf function. The only
prerequisite for a successful format string exploit is that the
attacker must be able to control that format string.

This paper presents String Oriented Programming (SOP),
an approach that exploits static memory regions in ASLR en-
abled applications. SOP uses a format string bug to exploit
applications that are protected by a combination of weak
ASLR, DEP, and stack canaries. Similar to return oriented
programming or jump oriented programming, SOP does not
rely on existing code but concatenates gadgets in the appli-
cation using static program analysis.

1. Introduction
Software running on current computer systems is protected
against a wide variety of control-data attacks using three pro-
tection mechanisms. First, code injection is no longer possi-
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ble due to Data Execution Prevention (DEP), which prohibits
the CPU from executing instructions on non-code memory
pages. DEP uses the executable bit for memory pages in
modern CPUs to enable non-executable data regions (i.e., the
stack and the heap of the application). A stronger guarantee
is W ⊕X which ensures that a page is either writable or ex-
ecutable but not both. Linux uses an W ⊕X approach called
Exec Shield [26]. Second, canaries [15] (variables with spe-
cial values) are placed next to buffers on the stack or on the
heap and their values are validated to protect the application
from buffer overflows. Third, Address Space Layout Ran-
domization [4, 5, 18] (ASLR) is a probabilistic protection
that randomizes the locations of code, stack, heap, and other
data.

On the other hand, Return Oriented Programming [20]
(ROP) and Jump Oriented Programming [7] (JOP) are two
modern attack techniques that no longer rely on injected ex-
ecutable code but reuse existing application code. ROP uses
so-called stack invocation frames to combine different al-
ready existing code snippets. In addition, ROP relies on an
unchecked application stack: return addresses must not be
verified. Modern runtime guards (e.g., libdetox [19]) use a
separate shadow stack to check return addresses and there-
fore prohibit ROP based attacks. JOP based attacks gener-
alize ROP attacks by exploiting any attacker-controlled in-
direct control flow instruction and are more complicated to
protect against. A runtime system either checks the integrity
of every dynamic control flow instruction or the compiler
ensures that no open dynamic control flow instructions (e.g.,
jmp *%eax; an indirect jump through the eax register) are
available in the compiled source (e.g., CFI [1] or XFI [11]).

Both ROP and JOP rely on well-known code locations
to be effective (i.e., either on non-randomized code regions
or on information leaks in the application that disclose code
locations); in addition ROP relies on constant, well-known
stack addresses and JOP relies on constant, well-known heap
data locations.

Unfortunately, the current ASLR implementation for
Linux [18] randomizes only the locations of the stack, the
heap, and the code and data locations of all dynamically
loaded libraries; the main executable itself is often not ran-
domized. Most applications on Linux are not compiled as



Position Independent Executables (PIE) and are mapped to
a static memory address (currently, only 27 out of all bi-
naries on Ubuntu 11.10 are compiled as PIE). Static code
regions create an opportunity for ROP and JOP. The com-
bination of writable sections (e.g., the Global Offset Table -
GOT1), indirect control flow transfers (e.g., in the Procedure
Linkage Table - PLT2), and gadgets in the static application
can be used to break ASLR. A gadget is a sequence of as-
sembler instructions (not necessarily a function) that already
exists in the memory image of the application and executes
some specific computation that is valuable to the attacker.

One different class of bugs has not yet received ade-
quate attention in the context of DEP, stack canaries, and
ASLR: format string vulnerabilities. If an attacker controls
the first parameter to a function of the printf family, the
string is parsed as a format string. Using such a bug and
special format markers result in arbitrary memory writes.
Existing exploits use format string vulnerabilities to mount
stack or heap-based code injection attacks or to set up re-
turn oriented programming. Format string vulnerabilities are
not a vulnerability of the past but still pose a significant
threat (e.g., CVE-2012-0809 reports a format string bug in
sudo and allows local privilege escalation; CVE-2012-1152
reports multiple format string bugs in perl-YAML and al-
lows remote exploitation, CVE-2012-2369 reports a format
string bug in pidgin-otr and allows remote exploitation)
and usually result in full code execution for the attacker.

This paper assumes the following attack model: an at-
tacker with restricted privileges tries to escalate privileges
using String Oriented Programming. The attacker has access
to the binary (either because the application is open-source
or through some information leak). The attacker is either re-
mote and tries to get user access, or the attacker is local and
tries to attack a “SUID” based binary to get administrator
privileges. The attacker supplies specially crafted malicious
input to the application to exploit a format string bug.

String Oriented Programming (SOP) leverages format
string vulnerabilities in combination with ROP and JOP at-
tacks to bypass ASLR, DEP, and stack canaries. We describe
an approach that exploits arbitrary non-PIE binaries that use
a combination of ASLR, DEP, and stack canaries. Stack ca-
naries are bypassed by using attacker-controlled memory
writes that leave the canaries intact. ASLR is circumvented
by storing exploit data in well-known locations in static
memory regions; control flow is redirected by overwriting
GOT slots that are used by code in the PLT. DEP is circum-

1 The GOT enables dynamically shared libraries. Every imported function
that is used in a module has a corresponding GOT entry. The GOT entry
points to the runtime address of the imported function and is resolved by
the dynamic loader.
2 Each runtime module, e.g., a library or an executable, has a PLT that
contains function stubs for each imported function. The code in the runtime
module calls the local stub in the PLT which then redirects control flow
through the GOT to the dynamically resolved imported function.

vented by using either ROP or JOP. To add realism to this
discussion, this paper focuses on IA32 and Linux but the
discussed technique applies to, e.g., Windows and x86-64 as
well.

2. Building blocks for String Oriented
Programming (SOP)

SOP relies on an existing format string bug in an application
and escalates to any possible control-data attack (code injec-
tion) or non-control-data attack (this paper uses either ROP
or JOP as examples). This section introduces the different
building blocks needed to set up SOP and relates these at-
tack vectors to protection mechanisms that are the security
standard of current applications.

2.1 Attack vectors
This section describes existing attack vectors that are used
to exploit an application. A successful attack (i) redirects the
control flow of the application to an alternate location that
would not be reached otherwise (i.e., new code is injected
into the application) or (ii) executes already existing code
in a different context (i.e., existing code is executed with
different - malicious - data). Both forms of attack rely on
the following features:

1. The runtime environment must allow the redirection of
the control flow to alternate locations using a control flow
transfer instruction. Control flow transfer instructions are
jump instructions, indirect jump instructions, conditional
jump instructions, call instructions, indirect call instruc-
tions, return instructions, interrupts, and system calls. Di-
rect control flow transfers encode the target in the instruc-
tion and cannot be used for exploits.

Indirect control flow transfers (indirect jumps, indirect
calls, and return instructions) read the absolute target ad-
dress from a data region or register. An attacker can redi-
rect a legitimate indirect control flow transfer by control-
ling either the memory location or the specified register
(depending on the encoding of the indirect control flow
transfer). Exploits either overwrite the register with an
attacker supplied value or overwrite the data region that
contains the target pointer to achieve the initial control
flow redirection: (i) for return instructions the EIP on the
stack is overwritten, (ii) for indirect calls either a func-
tion pointer on the heap, a GOT entry in a shared library,
or vtable entries of objects is changed, or (iii) for indi-
rect jump instructions data-structures of the memory al-
locator [6] are changed.

2. The exploit must inject some form of payload into the
application. Control-data attacks inject machine code in-
structions into an executable memory region of the ap-
plication. These instructions are executed after the initial
control flow redirection. Data-based attacks like ROP or



JOP modify data structures of the application, a shared
library, or the standard loader to execute their malicious
payload.

An exploit is only successful if both requirements are
met. The following sections present four possible attack
vectors in more detail.

2.1.1 Code injection
A code injection attack writes code to an executable region
of the application’s memory image and transfers control
to that injected code [2]. Code injection attacks often use
a buffer overflow (e.g., for a C based string or array) to
inject code and to overwrite the stored return instruction
pointer on the stack in one step. Code injection attacks are no
longer effective due to increased protection through ASLR,
DEP [26], and non-executable stacks that are enabled by
default on modern systems.

Code injection is a mature attack vector that has been
used for many years. Until recently Intel IA32 did not sup-
port the separation of code and data and the CPU tried to
interpret any memory region as executable, enabling code
injection attacks into data regions. x64, the 64 bit exten-
sion of the x86 ISA introduced an additional executable flag
for each memory page. The executable flag enables sepa-
ration of data and code. Only code on pages that have the
executable flag set is executed by the CPU. If an exploit
redirects control flow to a data page then an exception is
triggered. Current operating systems support some form of
W ⊕ X; a memory page is either writable or executable.
Due to W ⊕ X this attack vector is only applicable if the
application uses memory pages that are both writable and
executable which is not common except for (i) some old ap-
plications that use executable trampolines on the stack, (ii)
misconfigured memory regions, or (iii) memory pages that
are used to place code that is dynamically generated by a
just-in-time compiler.

2.1.2 Return Oriented Programming
Return to libc and Return Oriented Programming [16, 20,
22] (ROP) rely on control of both the stack pointer and the
contents of a data buffer on the stack. One way to satisfy
these preconditions is through a stack-based buffer overflow.
A ROP attack constructs a set of stack invocation frames
that are popped one after the other. Each stack invocation
frame prepares a set of parameters on the stack and targets a
gadget that uses the parameters and executes some computa-
tion. A ret2libc attack [23] is a simple ROP attack that uses
only one stack invocation frame to execute a libc function
(e.g., system()) with a set of attacker-controlled parame-
ters. ROP works around DEP but relies on static addresses
for the stack and for the gadgets. In addition ROP needs a
way to initially redirect control flow to the first ROP invoca-
tion frame.

i n t foo ( char ∗cmp ) {
/ / a s s e r t ( s t r l e n ( cmp ) < MAX LEN )
char tmp [MAX LEN ] ;
s t r c p y ( tmp , cmp ) ; / / m i s s i n g bound check
re turn s t r c mp ( tmp , ” f o o b a r ” ) ;

}
. . .
/ / u s e r s t r i s > MAX LEN
i f ( i s f o o b a r ( u s e r s t r ) )
. . .

Listing 1. A potential stack-based overflow.
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Figure 1. Stack before and after a ROP attack.

Q [22] is a system that analyzes binaries for ROP pos-
sibilities. The automatic scanning works around ASLR for
non-PIE binaries but relies on a system without stack ca-
naries. Q is therefore not effective on Linux systems like
Ubuntu that enable ProPolice (stack canaries) by default.

Listing 1 shows a vulnerable C snippet that is prone to
a stack-based buffer overflow. An attacker can inject any
data into the buffer and write over the bounds of the buffer
to overwrite data structures that are higher up in the stack
frame. Figure 1 illustrates a simple return oriented program-
ming attack that exploits the missing bound check in List-
ing 1 to create one stack invocation frame that executes the
system() function with forged parameters.

2.1.3 Jump Oriented Programming
Jump Oriented Programming [7, 20] (JOP) is similar to ROP
in that JOP manipulates the control flow of the application.
Jump oriented data is not limited to stack overflows but
uses modified indirect control flow transfers to construct the
chain of executed gadgets. Indirect control flow transfers are
used in the application to support, e.g., library calls, function
pointers (callbacks), and object oriented programming. JOP
has similar limitations like ROP and needs static addresses
for the gadgets and a known heap location for the JOP
dispatcher. In addition JOP needs to redirect control flow
to the first JOP dispatcher. ASLR severely limits the initial
redirection for JOP on current Linux systems.

Figure 2 illustrates a simple JOP dispatcher on a modified
heap object. The dispatcher is a special gadget that uses one



register to dispatch individual JOP frames. Each JOP frame
contains data and a pointer to a code gadget. The gadget
returns control flow to the dispatcher after execution.

2.1.4 Format string attacks
A format string attack [13, 14, 17, 21] exploits that an
attacker controls the first parameter to a function of the
printf-family (all functions that accept a format string as a
parameter, e.g., printf, fprintf, sprintf, and vprintf).
The printf-family parses the format string argument for
control tokens (of the form %T) to determine the number of
variable parameters that follow. The token determines how
the output on the n-th position on the stack is formatted in the
string. Many programmers forget to check user-controlled
strings for these control tokens and pass the string directly
to the function (e.g., printf(usr str)). A safe implemen-
tation would use a static parameter to pass a single string
(e.g., printf("%s", usr str)).

The malicious format string can use tokens like %p to read
specific pointers on the stack, and %s to read specific stack
addresses as strings. An attacker uses these parameters to get
information about the application during the construction of
the format string attack.

The %n token reverses the order of input and writes the
number of already printed characters to the specified pointer.
Any argument on the stack can be used as a target address for
%n, e.g., %4$hn writes 2 bytes to the pointer specified 4∗4 =
16 bytes upwards on the stack. The format string itself can
be used to store pointers to specific addresses if it is placed
on the stack. The number of written bytes can be controlled
with additional parameters (e.g., printf("%NNc"); prints
NN bytes) and increases the counter used for %n. For exam-
ple, printf("AAAA%1$49391c%6$hn") writes 0xc0f3 (2
bytes, 0xc0f3 − 4 = 49391) to 0x41414141 if the string
itself is on the 6th slot up on the stack. In this example
an input string of 18 bytes length is used to generate an
attacker-controlled 2 byte memory write. Format string at-
tacks write arbitrary values to arbitrary memory locations.
These attacker-controlled memory writes are used to, e.g.,
redirect control flow to injected code.

insns … … jmp *

insns … … jmp *

insns … … jmp *

insns … … jmp *

Gadget catalog (at static addrs)

Dispatcher, e.g.,
add %edx, 4; jmp *(%edx)

gadget address

(data)

gadget address

(data)

gadget address

(data)

Scratch space (at static addrs)

Figure 2. Modified heap object after JOP attack.

2.2 Protection mechanisms
This section discusses protection mechanisms that try to
detect possible attacks on different levels of granularity. The
protection mechanisms either (i) check the integrity of the
stack, (ii) verify library usage, (iii) encrypt pointers, (iv)
change the instruction set, (v) protect format strings, (vi)
randomize memory locations, or (vii) check and verify every
instruction that changes control flow.

Most languages place buffers and variables alongside
with return instruction pointers and frame pointers on the
regular application stack. Several protection mechanisms [10,
15] verify the stored return instruction pointer on the stack
or a canary next to the instruction pointer before the return
instruction dereferences the stored address. These mecha-
nisms protect from malicious changes of the return address
and the stack layout.

Libsafe/Libverify [3] implements wrappers for library
functions that are used in attacks. This approach protects
applications from common errors and adds extra checks to
“dangerous” functions. A disadvantage of this approach is
that it only protects specific functions and general patterns of
attack vectors. The glibc has a set of similar patches that are
enabled if the FORTIFY SOURCE switch is enabled at com-
pile time on a per-application basis. These patches check
every parameter of format strings. Under certain constella-
tions the fortify patches are not secure and can be disabled
at runtime [21].

Pointer encryption [9] is an interesting approach to pro-
tect instruction pointers from malicious changes. All instruc-
tion pointers are encrypted (e.g., using a hash). The appli-
cation uses the encrypted pointers in all computation (e.g.,
comparing different function pointers). The compiler adds
additional code that resolves the original instruction pointer
using the given encrypted pointer whenever it is derefer-
enced. The attacker does not know the encryption function
and therefore cannot forge a pointer to an arbitrary address.
Instruction set randomization [12] is a similar approach. The
application uses a randomized instruction set and an attacker
is unable to guess the instruction set.

Format Guard [8] warns if format strings and functions
of the printf family are used with unchecked user input.
These guards protect the already existing functions of the
libc but do not protect from format string exploits in the
application code.

Address Space Layout Randomization (ASLR) [4, 5, 18]
randomizes all memory regions of an application (e.g., dy-
namically loaded libraries, heap, and stack). A potential ex-
ploit can no longer rely on constant addresses for, e.g., li-
brary routines and gadgets. A drawback of this approach is
that the address space for 32bit binaries is small and only a
few bits can be randomized which opens the possibility of
probabilistic attacks [24].



CFI/XFI [1, 11] uses static binary translation to verify
every target of all control flow transfers. A set of targets
is associated with every control flow transfer location. The
group of targets is identified with a secret number. This
number is verified when the control flow transfer is executed.
The control flow transfer is allowed only if the target number
(in the target code) matches the verification code at the
source location.

Libdetox [19] is a dynamic binary translation approach
that uses runtime information to construct a control flow
graph. This control flow graph is enforced at runtime using
dynamic checks that are encoded into the translated code.

2.3 Weak ASLR: static regions
The Linux ASLR implementation [18] on x86 is limited if
the application itself is not compiled as a Position Indepen-
dent Executable (PIE). In particular non-PIE ASLR appli-
cations are mapped to a constant address (this includes the
data section, bss section, code section, GOT section, and
PLT section). An application can be compiled into a PIE,
which can then be loaded at random addresses. Linux distri-
butions like Ubuntu only compile a small set of binaries (27
for Ubuntu 11.10) as PIE due to a high performance penalty
on x86 [25]. All other programs are compiled without PIE
and remain vulnerable in the presence of weak ASLR.

The application image starts at a specific constant address
(0x0804800). The PLT and GOT regions remain constant as
well. The GOT region is writable; writes to a GOT slot can
be used to store attack data at static addresses or to redirect
control flow by redirecting PLT slots to other locations.

3. String Oriented Programming
String Oriented Programming (SOP) combines a format
string vulnerability and ROP/JOP code-reuse techniques into
one technique that bypasses ASLR, stack canaries and DEP
for non-PIE binaries. SOP uses gadgets that are available in
the code region of the application. SOP assumes that some
form of DEP is enforced by the system. Otherwise it would
be simple to inject some code and to redirect the control flow
to the injected code.

Format string exploits enable attacker-controlled writes to
attacker-controlled addresses (encoded in the format string)
to any memory location that is referenced through a pointer
on the stack. An attacker can place arbitrary pointers in an
attacker-controlled buffer on the stack; these pointers are
then used in the format string attack to write arbitrary mem-
ory locations. We assume that the FORTIFY SOURCE patches
of the glibc are not enabled (or that we can call printf di-
rectly). Under some assumptions the fortify patches can be
disabled using the format string attack itself or some other
auxiliary attack [21]. The fortify patches only add some
complexity (and length to the format string).

3.1 Executing code
SOP uses two scenarios to get control of the application
without executing injected code. The scenarios are similar
to either ROP or JOP. The first (simpler) scenario exploits
DEP and stack canaries, while the second scenario exploits
DEP, stack canaries, and weak ASLR.

3.1.1 Direct control flow redirect
The first code execution scenario uses an attacker-controlled
memory write and a user-controlled buffer on the heap or on
the stack (often the format string itself) to prepare the attack.
The attacker-controlled memory write redirects control flow
by overwriting the return instruction pointer on the stack to a
gadget that adjusts the stack frame to the attacker-controlled
buffer. The buffer contains a set of invocation frames that
concatenate several available gadgets to execute arbitrary
code. If the buffer is on the stack then SOP can use ROP,
if the buffer is on the heap then SOP can use JOP. This
approach combines format string exploits and ROP similar
to Section 7.2 of Nergal’s paper on advanced return to libc
attacks [16].

3.1.2 Indirect control flow redirect
The second code execution scenario uses static data regions
in the main application to store all exploit data. Control flow
is redirected in two steps: SOP first overwrites the GOT slot
that is used by the PLT jump that resolves the next imported
function (in the control flow), the application then continues
until the next imported function is called. The PLT jump then
redirects the control flow to either a ROP gadget or to a JOP
dispatcher.

3.2 Resolving addresses
Without ASLR, SOP can be used to easily construct a set of
invocation stack frames using direct control flow redirection
as in Section 3.1.1 that execute arbitrary functions of the libc
(e.g., mmap to map an executable memory region, strcpy to
copy the shellcode), and an indirect control flow transfer to
the injected shellcode). If (weak) ASLR is enabled, then the
only option for an exploit is to use an indirect control flow
redirection as in Section 3.1.2.

Exploits are limited to imported library functions and
code sequences available in the application. The dynamic
loader resolves the dynamic locations for all imported li-
brary functions when they are called, enabling indirect calls
of library functions through the PLT slots of the application.

The imported library functions in the PLT region can be
used to resolve unimported and unreferenced functions. The
location of resolved library functions are stored at static
addresses in the GOT region. Gadgets can read and modify
these addresses. If the binary of the library is known then
the (dynamic) addresses of other library functions that are
not imported can be computed. The gadget adds the offset



void foo ( char ∗ a r g ) {
char t e x t [ 1 0 2 4 ] ;
i f ( s t r l e n ( a r g ) >= 1024) re turn ;
s t r c p y ( t e x t , a r g ) ;
p r i n t f ( t e x t ) ;
p u t s ( ” lo gg ed i n ” ) ;

}
. . .
foo ( u s e r s t r ) ;
. . .

Listing 2. A potential format string attack

between the imported function and the requested function to
the resolved address in the PLT slot. This enables gadgets
to resolve any (unimported) library function whenever a
symbol of that library is used.

4. SOP case study
The SOP case study shows how the sample program in List-
ing 2 can be exploited under different environmental con-
figurations. The host system uses a set of different protec-
tion features that are either enabled or disabled. The protec-
tion features are ASLR, DEP, stack canaries[15] (protecting
the application against buffer overflows), and if specific libc
functions are already imported in the main application. The
application is compiled without PIE, i.e., the main applica-
tion image is mapped to a fixed address. This is the standard
configuration for Ubuntu 11.10.

4.1 Mo DEP, no ProPolice, no ASLR
If neither ASLR nor DEP are active then the format string
contains an attacker-controlled memory write to, e.g., the
return instruction pointer, a GOT slot, or a function pointer
to redirect control flow to the injected code on the buffer on
the stack. This attack conforms to the simple code injection
attack in Section 2.1.1.

4.2 DEP, no ProPolice, no ASLR
Exploits rely on data oriented attacks if DEP is enabled. In
this configuration a buffer overflow is the simplest solution
to set up a ROP attack as described in Section 2.1.2 or a JOP
attack as shown in Section 2.1.3.

4.3 DEP, ProPolice, no ASLR
Enabling the ProPolice extension changes the threat land-
scape and buffer overflows can no longer (easily) be used
to exploit systems. ProPolice is enabled by default in recent
versions of gcc3. On the other hand ASLR is not enabled in
this configuration therefore a format string attack is used to
redirect control flow (by overwriting the return instruction
pointer of the printf function itself) to a gadget that adjusts

3 ProPolice is on by default and can be disabled on request using the
-fno-stack-protector compile-time switch.
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Figure 3. Stack before and after a format string based ex-
ploit that prepares stack invocation frames and works around
ProPolice (blue: callee, orange: foo, green: printf).

the %esp pointer into the user-controlled string. The combi-
nation of gcc version 4.5.2 and libc-2.13 adds the function
libc csu init to all compiled binaries; this function

contains a gadget (add $0x1c,%esp; pop %ebx; pop

%esi; pop %edi; pop %ebp; ret) that lifts the %esp

by 44 bytes. The format string is prepared so that it contains
a set of invocation frames that enable ROP at that specific
address.

Figure 3 compares the stack layouts of Listing 2 when
the control flow is inside the printf function. ProPolice (i)
adds a secure canary behind the buffer (that is checked be-
fore the return instruction pointer is dereferenced) and (ii)
copies the arguments below the buffer. The stack invocation
frames in the buffer contain sets of arguments plus return
instruction pointers to libc functions (e.g., a call to system
would be encoded as &system; pointer to argument

string). Pointers to, e.g., string arguments, can be directly
encoded because the stack addresses are known due to the
missing ASLR protection.

4.4 DEP, ProPolice, ASLR, imports available
If ASLR is enabled then the stack and library addresses are
no longer constant and therefore unknown. The application
itself is located at a static address. In this section we assume
that all the gadgets and all the library functions that we want
to call are imported in the main application. SOP uses the
same basic technique as in Section 4.3 with two differences.

The first difference is that the functions are not called di-
rectly but through their PLT slots in the application (i.e.,
the address of function is replaced by the address of
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function@PLT). The PLT section contains an entry for each
imported function. This code stub executes an indirect jump
through a corresponding GOT entry. The standard loader
resolves the correct address for the application. SOP piggy-
backs on the standard loading process to resolve the correct
references to randomized library functions before they are
executed.

The second difference is that addresses on the stack are no
longer encoded directly. Any data that is used in the exploit
must first be copied to a static region in the application. SOP
uses a sequence of format string writes (or an invocation of
strcpy) to prepare the static data. The invocation frames
then use the well-known locations as arguments.

Figure 4 shows a simple exploit that uses a sequence
of three four byte writes to (i) write the 8 bytes string
“/bin/sh\0” into two GOT slots, (ii) overwrite the GOT
entry of the imported function that is called next with the lift
esp gadget that we used in Section 4.3, and (iii) prepare the
beginning of the exploit string with a stack invocation frame
that calls system trough the static address of system@PLT.
After printf returns the function would continue and try
to execute puts, the next imported function in our program.
But the PLT entry of puts is redirected to our lift esp gad-
get that pops some values from the stack and returns into
the beginning of the format string on the stack that con-
tains the ROP stack invocation frames. The ROP invocation
frame then executes system("/bin/bash"); (or any other
attacker-controlled payload).

4.5 DEP, ProPolice, ASLR, no imports available
If all protection mechanisms are enabled and the application
does not import specific library functions then missing func-
tion addresses are resolved on the fly. Any missing imports
are resolved using the approach described in Section 3.2.
A single imported libc function allows an exploit to call
any sequence of libc functions with arbitrary arguments

through offset calculation and GOT updating between the
different function calls, thereby circumventing ASLR, DEP,
and ProPolice.

5. Possible mitigation techniques
This section discusses two possible mitigation techniques to
protect applications from SOP. The first mitigation technique
discusses a possible extension of ASLR to all memory seg-
ments of an application while the second mitigation tech-
nique focuses on fixing the printf function.

5.1 Full ASLR
Full ASLR randomizes the address layout of the main ap-
plication (including writable sections like the GOT section)
as well as the layout of all libraries. A PIE application
has no static memory addresses during subsequent execu-
tions. Possible exploits techniques need additional informa-
tion leaks in the application that disclose the location of code
sequences as a first step.

Current applications on IA32 use weak ASLR that is lim-
ited to libraries because of performance reasons. The ASLR
implementation uses an additional register as a relative code
reference pointer. Registers are sparse on IA32 and the use
of one of the few registers leads to a huge performance im-
pact.

This section supports the performance overhead claim
and presents an evaluation for the PIE feature of GCC that
produces position independent executables. The PIE fea-
ture enables ASLR for binaries. The evaluation uses GCC
version 4.5.2-8ubuntu on Ubuntu 11.04 with Linux ker-
nel version 2.6.38-15-generic and glibc version 2.13. The
evaluation system uses an Intel Core i7 dual core CPU
clocked at 3.07 GHz with active SMP and 12GB RAM.
The evaluation uses all benchmarks of the SPEC CPU2006
v1.01 benchmark suite that compile using recent GCC ver-
sions. The evaluation uses two different compilation set-
tings. The benchmarks are compiled with either -O3 or -O2.
The benchmarks are executed using the runspec program
and the configuration uses 3 runs.

Table 1 compares SPEC CPU2006 performance for -O3
(the most aggressive optimization level of GCC) with and
without -fPIE. We see that PIE executables are never faster
than non-PIE executables and the overhead varies between
0.37% and 26% depending on the benchmark. The bench-
marks can be grouped into 4 groups: negligible overhead be-
tween 0% and 2% (4 benchmarks), small overhead up to 5%
(3 benchmarks), medium overhead between 5% and 10% (5
benchmarks), and high overhead with more than 10% per-
formance penalty (7 benchmarks).

The benchmarks with high overhead either have a highly
irregular workload with a large amount of indirect con-
trol flow transfers (400.perlbench and 458.sjeng) or process
streams of data (401.bzip2, 453.povray, and 482.sphinx3).
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Figure 5. Comparison of the overhead for PIE between -O2 and -O3.

Benchmark -O3 [s] -O3 -fPIE [s] Ovhd. [%]
400.perlbench 369 463 25.47%
401.bzip2 610 713 16.89%
403.gcc 308 334 8.44%
429.mcf 254 262 3.15%
445.gobmk 479 550 14.82%
456.hmmer 554 584 5.42%
458.sjeng 533 671 25.89%
462.libquantum 560 624 11.43%
464.h264ref 760 829 9.08%
471.omnetpp 298 323 8.39%
473.astar 472 492 4.24%
483.xalancbmk 242 259 7.02%
433.milc 394 400 1.52%
444.namd 536 538 0.37%
447.dealII 426 431 1.17%
450.soplex 258 270 4.65%
453.povray 244 290 18.85%
470.lbm 327 328 0.31%
482.sphinx3 520 607 16.73%
Average 429 472 10.12%
Geo. mean 405 443 9.40%

Table 1. Performance of SPEC CPU2006 for -O3 and rela-
tive overhead for PIE.

These workloads have a high register pressure and the re-
duced set of registers is the source for the high overhead.

Figure 5 compares the SPEC CPU2006 results for -O2
and -O3. The benchmarks are ordered by descending over-
head for -O3. The overhead for both -O2 and -O3 is compa-
rable for all benchmarks.

The average overhead for PIE (when compiled with O3)
is 10% and the geometric mean is 9.4%. This overall non-
negligible overhead is the reason why not all applications
are compiled with PIE. The Ubuntu distribution chooses
performance over the increased security benefit that PIE
offers.

5.1.1 Fixing libc
A second possible mitigation strategy is to fix (and patch) the
printf functions in libc. Either the %n token could be re-
moved, or the compiler could ensure that printf may only
access passed parameters. FormatGuard [8] already presents
similar mitigation strategies. Recent GCC versions execute
some static checks and print a warning if format strings
can be supplied by an external user. In addition libc uses
FORTIFY SOURCE to execute additional runtime checks for
format strings (e.g., a format string that uses %n must be in
a non-writable memory area, and if direct parameter access
is used in a format string to access the n-th parameter on the
stack then all other parameters on the stack between the first
parameter and the n-th must be accessed as well in the same
string). Due to implementation limitations of libc (that must
support both modes with and without FORTIFY SOURCE in
a single binary) these patches can be disabled at runtime as
described in, e.g., [21].

Even if the libc is fixed and all possible format string vul-
nerabilities are removed then the problem of the unrandom-
ized application memory image remains. Some static sec-
tions of the application are writable on IA32 and can be used
to setup an exploit using a data attack that enables a set of
attacker-controlled writes to arbitrary memory locations.



6. Conclusion
Current Linux distributions use a variety of security features
to protect the running system from security critical bugs in
applications. Security features like Data Execution Preven-
tion (DEP), Address Space Layout Randomization (ASLR),
and stack protection techniques are enabled by default and
protect from a variety of attack vectors.

Current systems do not enable Position Independent Ex-
ecutables (PIE) by default; resulting in some static memory
regions. String Oriented Programming (SOP) is a possible
approach that exploits the weakness of non-PIE applications.
SOP uses format string bugs to copy exploit data to static
data regions and escalates to Return Oriented Programming
or Jump Oriented Programming, thereby effectively bypass-
ing ASLR, DEP, and stack canaries.
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