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Abstract

This paper presents an approach to the safe execution of applica-
tions based on software-based fault isolation and policy-based sys-
tem call authorization. A running application is encapsulated in
an additional layer of protection using dynamic binary translation
in user-space. This virtualization layer dynamically recompiles the
machine code and adds multiple dynamic security guards that ver-
ify the running code to protect and contain the application.

The binary translation system redirects all system calls to a
policy-based system call authorization framework. This interposi-
tion framework validates every system call based on the given argu-
ments and the location of the system call. Depending on the user-
loadable policy and an extensible handler mechanism the frame-
work decides whether a system call is allowed, rejected, or redirect
to a specific user-space handler in the virtualization layer.

This paper offers an in-depth analysis of the different security
guarantees and a performance analysis of libdetox, a prototype of
the full protection platform. The combination of software-based
fault isolation and policy-based system call authorization imposes
only low overhead and is therefore an attractive option to encapsu-
late and sandbox applications to improve host security.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection; D.3.4 [Programming Languages]: Pro-
cessors — Run-time environments

General Terms Security, Performance

Keywords Security, Virtualization, Dynamic binary translation,
Dynamic instrumentation, User-space software virtualization, Pro-
cess sandboxing, Policy-based system call authorization, Optimiza-
tion.

1. Introduction

The secure execution of unknown binary code is an important prob-
lem. As the complexity and diversity of the installed software base
increases, more techniques are needed to guarantee the security of a
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system. Software patches in response to identified exploits or mal-
ware discovery tools are useful, yet both approaches are reactive
(and solutions or workarounds for vulnerabilities may take time to
develop) and are therefore of limited utility. A better solution is a
step towards proactive security and fault detection by strictly limit-
ing the potential damage that can be done.

To contain security problems in a practical system, it is impor-
tant to encapsulate applications and to limit the data they can ac-
cess. An application running in a user-space sandbox can access its
data but cannot break out of the virtualization layer and access any
other system data or escalate privileges.

User-space sandboxing builds an additional fine-grained layer
of protection around an application. Binary translation enables fine-
grained control of the executed instructions and enables additional
security guards that can be added dynamically into the compiled
code. These guards control all executed instructions inside the
sandbox, and check all system calls that interact with the kernel
inside the process itself. Instructions that change the control flow
of the application are wrapped so that they comply with a tight
security model and instructions that branch into the kernel are
redirected to a policy-based interposition system. The system calls
are checked depending on the name, supplied parameters, and
call location. A per-application policy describes the set of system
calls that a program can execute and specifies which parameter
combinations are allowed for each system call.

The proposed sandbox is completely invisible to the running ap-
plication. Applications see no functional difference to an untrans-
lated run, so programs cannot detect or circumvent the sandbox.

This paper presents an approach to a fast, secure user-space
sandbox that enforces security. The security concept is built on the
following two principles:

1. software-based fault isolation: the binary translator uses spe-
cial guards to ensure that only application and library code is
translated, that code cannot escape the binary translator, that no
injected code on the heap and on the stack is executed, and that
all system calls are redirected to the interposition framework.

2. policy-based system call interposition: the system call interpo-
sition framework ensures that all system calls are checked and
validated and that only authorized system calls are executed. A
policy controls which arguments and which program locations
are allowed for each individual system call.

The sandbox loads a policy file before an application is executed
and enforces this policy at runtime. If the user-program executes an



illegal system call, illegal code, or tries to execute an unchecked
control transfer then the process is terminated by the sandbox.

The policies can contain both white-listing and black-listing of
system calls based on system call numbers, locations and argu-
ments. Wildcards can be used to specify groups of arguments. An
additional extension are the redirected system calls. If a system call
is blocked then a fake value can be returned to the user-space pro-
gram. The user-space program is unable to detect if a real system
call or a redirected system call was executed. This feature can be
used to analyze untrusted software or to re-implement system calls
in user-space. See Figure 1 for an overview of the fault isolation
layer and the implementation of fake system calls in user-space.
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Figure 1. Sandbox overview with user-space fault isolation and
delegation to redirected system calls.

The contributions of this paper are the combination of:

1. fine-grained software-based fault isolation using special guards
that are implemented through binary translation to protect
against code injections and the execution of unchecked code,

2. the additional guards that guarantee the fault isolation proper-
ties, and

3. flexible per-process user-defined policy-based system call inter-
position in user-space without the need for context switches to
validate specific calls and without additional privileged code in
the kernel. This paper also presents sample policies to guard
the SPEC CPU2006 benchmarks and the nmap network secu-
rity tool. A case study uses the Apache web-server to secure
and benchmark a daemon process.

The presented approach is not limited to Linux or x86. libdetox,
our implementation prototype for x86, supports the complete IA-
32 ISA. libdetox is able to sandbox unmodified Linux binaries,
dynamically add additional security guards, and redirect all system
calls to the policy-based system call interposition framework.

Section 2 presents background information on a basic dynamic
binary translator. Section 3 discusses security implications and cov-
ers process virtualization details as well as the specific guards and
explains policy-based system call interposition. Important imple-
mentation details are highlighted in Section 4. The system is evalu-

ated in Section 5, followed by a discussion of related work and our
conclusion.

2. Dynamic binary translation

This section describes the design of a basic dynamic binary trans-
lator that implements software-based fault isolation. The dynamic
binary translator processes basic blocks of the original program and
places the translated blocks in a code cache. The mapping between
untranslated and translated blocks is recorded in a mapping table.
Figure 2 illustrates the runtime layout of a basic table-based binary
translator.

Translator

Opcode 
table

1'

2'

3'
Trampoline to 

translate 4

Code cache

0

1

2 3

4

Original program

3    3'
1    1'
2    2'

Mapping

Figure 2. Runtime layout of a binary translator.

At the end of a basic block the translator checks if the outgoing
edges are already translated and redirects control transfers to the
translated counter parts in the code cache. If a target is not trans-
lated then the translator (i) constructs a trampoline that triggers the
translation of the corresponding basic block and (ii) redirects con-
trol flow to that trampoline.

The translator processes one instruction at a time. Control in-
structions are translated using special handler functions, all other
valid instructions are copied verbatim to the code cache. If the
translator encounters an illegal instruction it aborts the program.

Control instructions are translated so that the execution of the
translated program never leaves the code cache. For conditional
control transfers, jump instructions, and call instructions the trans-
lator either constructs a trampoline if the target is not yet translated,
or encodes a control transfer to the translated target in the code
cache.

Indirect control transfers like indirect jumps, indirect calls, and
function returns depend on runtime data and can change upon ev-
ery execution. The targets of indirect control transfers point to un-
translated code. The translator must replace these control transfers
with a runtime lookup in the mapping table and a control transfer
to the translated counterpart in the code cache. The runtime lookup
for each indirect control transfer ensures that control flow is only
transferred to well-known and translated locations.

These runtime lookups are responsible for most of the runtime
overhead of dynamic binary translators, and most optimizations
present in fast binary translators try to reduce this overhead.



3. Security guidelines

Software-based fault isolation is secure if programs are unable to
escape the fault isolation sandbox and no code is executed that does
not conform to a strict security policy. All executed code and all
executed system calls must be checked and verified. If the executed
code does not follow the security policy (e.g., due to programming
bugs, potential exploits, or backdoors) then the sandbox detects
these offenses and terminates the program.

The sandbox uses a layered security concept that builds on two
principles, software-based fault isolation, and policy-based system
call interposition. Each principle protects from specific attacks.
Process sandboxing through dynamic binary translation is the first
line of defense and ensures that (i) no injected code is translated
or executed, (ii) application or library code cannot be overwritten,
(iii) program code cannot escape or terminate the sandbox, and (iv)
program code cannot overwrite any data structures owned by the
sandbox. The binary translation framework translates all code be-
fore it is executed and uses special guards to ensure that the code
conforms to the security specification and that, e.g., control trans-
fers always target valid code. The first principle protects against all
code based exploits (e.g., overflows and return to libc attacks).

Process sandboxing builds the foundation for the second secu-
rity principle. The binary translation framework redirects all forms
of system calls to the policy-based system call interposition frame-
work. This framework checks every system call, the arguments of
the system call, and the location of the system call. Only system
calls that conform to the policy for the current application are al-
lowed. Depending on the policy decision each system call can be:

1. rejected and the program is terminated,

2. rejected but a fake return value is returned,

3. redirected to an internal implementation (for special handling
or additional checks),

4. allowed and the program continues.

Process sandboxing ensures that the translated code cannot es-
cape the binary translator and the policy-based interposition frame-
work limits the system calls that can be executed. The second prin-
ciple protects against data based exploits (e.g., integer overflows
and type errors) and builds a second line of defense at the coarse-
grained system call level. This policy must be tight to avoid privi-
lege escalation.

For performance reasons, target addresses of individual trans-
lated instructions are not checked. User-space software-based fault
isolation and the system call interposition framework ensure that
a program is unable to execute uncontrolled code and unspecified
system calls and lays the power to control system calls and their
allowed arguments into the hands of the policy writer.

3.1 Software-based fault isolation

Binary translation (BT) is a key component for user-space software-
based fault isolation. A dynamic translation system translates and
checks every machine code instruction before it is executed. Ev-
ery direct control transfer is translated, and every indirect con-
trol transfer is intercepted and only translated branch targets are
reached. The translator can change, adapt, or remove any invalid

instruction and is able to intercept system calls before they are ex-
ecuted. During the translation process code can be instrumented
and augmented with additional security features. Security features
like non-executable stack, stack guards, control flow evaluation,
or argument checking for specific functions are added without the
need to recompile the application. Even patches can be applied at
runtime to fix bugs in running applications.

Fault isolation offers a very fine-grained control of security as
all executed code must comply to a defined security policy, not
just the executed system calls. Security frameworks that validate
only bare system calls miss exploits that target the data integrity
of the executed program because they only detect an intrusion if
an invalid system call is executed but not when malicious code is
executed in user-space; e.g., data can be written to open files or a
memory mapped file can be changed without the need to execute a
system call. Fault isolation detects code injections and terminates
the program before the data structures are corrupted. Data-based
exploits on the other hand are not detectable by fault isolation and
are caught using policy-based system call interposition.

The binary translator is the foundation of the security guarantees
of the presented sandbox. The binary translator should be modular
and small to keep the trusted computing base small. This section
presents design criteria for a modular and flexible binary transla-
tion fault isolation layer that is needed to implement the additional
security guards and system call authorization. An important feature
of the binary translator is that return addresses on the stack remain
unchanged. This adds additional complexity when handling return
instructions as they are translated to a lookup and an indirect con-
trol transfer. On the other hand an unchanged stack ensures that the
original program can use the return instruction pointer on the stack
for (i) exception management, (ii) debugging, and (iii) return tram-
polines. Additionally the user program does not know that it runs
in a virtualized environment, and the address of the code cache is
only known by the binary translator.

3.1.1 Translated code

Only translated application and library code is executed. This prin-
ciple is enforced by the binary translator. By rewriting indirect con-
trol transfers into a runtime lookup and dispatch and adding tram-
polines to translate untranslated code on the fly, the translator en-
sures that execution of machine code is unable to escape the iso-
lation layer. All outgoing edges of translated basic blocks either
point to (i) trampolines that translate new code, (ii) translated code
in the BT’s code cache, or (iii) translated indirect control transfers
that map untranslated targets to translated code and transfer execu-
tion flow accordingly. Only code in valid locations (e.g., imported
library functions and application code) is translated. This princi-
ple ensures that no code injections on the heap or on the stack are
possible.

3.1.2 Binary translation: static versus dynamic

The most important property of a binary translator is to ensure that
all instructions are checked and translated prior to execution. Static
binary translation is not able to cover all code. Hidden code in data
sections could be reached through indirect jumps or a jump could
target into an instruction. Such control transfers are hard to analyze
statically, especially if malicious code targets a specific binary



translator, but are handled naturally in dynamic binary translators
that translate code on a basic block level before the basic block is
executed the first time.

Dynamic binary translator are therefore well suited to imple-
ment user-space software-based fault isolation.

3.1.3 Additional security guards

Binary translation guarantees that only translated instructions will
be executed but does not prevent individual instructions from over-
writing memory regions or executing specific system calls. Dy-
namic binary translation enables the implementation of additional
security guards by rewriting and encapsulating specific instruc-
tions.

An important feature of the binary translator is that no pointers
to internal data structures are left on the stack. The binary translator
uses the same stack as the translated user-program to dynamically
translate new basic blocks and dispatch indirect control transfers.
A custom tailored exploit could target the binary translator itself. If
the program were able to locate the internal data structures of the
binary translator (e.g., the code cache), it could modify the executed
code by directly changing instructions in the code cache and so
break out of the isolation layer. Therefore the stack is pruned of
pointers to internal data structures before the execution returns to
the translated user-program. Additionally the translator guarantees
that application code that tries to access internal data structures is
not translated by virtualizing, e.g., addresses or registers.

The basic binary translator is extended by the following security
guards that harden the user-space isolation sandbox and to ensure
that application code cannot escape out of the sandbox:

Executable space protection: implements a form of executable
space protection for x86 on a section basis in user-space. This
protection holds for regions defined in ELF headers of the
programs and loaded libraries, even if they are smaller than
a page. The guard checks if the target area is defined in the
program or an imported library and if it actually contains code.
If there is a violation then the program is terminated. This guard
protects against the execution of code injected through stack-
based and heap-based buffer overflows.

Executable bit removal: this guard marks the code of the untrans-
lated program as non-executable (by using mprotect calls).
The application does not know the location of the internal code
cache and is therefore not able to overwrite parts of the code
cache with injected code. This guard ensures that only code
from the binary translator and translated code in the code cache
can be executed.

Return address verification: This guard checks that the return ad-
dress is not changed by implementing a shadow stack that is
only accessible from internal code where the return address
is verified for each return instruction. The shadow stack con-
tains pairs of addresses, the original location and the translated
counterpart. If the address on the original stack does not cor-
respond to the address on the shadow stack then the program
is terminated. This guard protects against stack based over-
flows and return to libc attacks and is orthogonal to solutions
like StackGuard [14], Propolice [24], libverify [3], and Format-
Guard [12].

Signal handling: the binary translator keeps a mask of installed
signals on a per-thread basis. Whenever a new handler for a spe-
cific signal is installed the code of the handler is wrapped into
a trampoline that guarantees the secure execution of the signal
and ensures that the signal processing code cannot escape the
binary translator. This guard protects against errors in the trap
handling and enables the sandbox to catch memory accesses to
unmapped memory regions (e.g., probing for the location of the
code cache).

Secure context transfers: the control transfer from the binary
translator to translated code uses an indirect control flow trans-
fer to ensure that no pointers to any internal data structures of
the binary translator are exposed on the stack. This guard hides
the internal data structures of the sandbox from the application.

Randomized addresses: the binary translator allocates all internal
data structures on random addresses using an internal mmap im-
plementation. On IA-32 the instruction pointer cannot be read
directly (e.g, through a register) and indirect control transfers
(e.g., call instructions) are replaced by a secure sequence of
virtualized instructions during the translation process. All trans-
lated indirect control flow transfers point into the original code
region and are replaced with a lookup in the mapping table.
The translated code is therefore unable to recover a pointer into
the code cache or any other internal data structure of the bi-
nary translator. The internal mmap implementation uses the ad-
dress space layout randomization feature that is available in the
Linux kernel [7, 8, 30]. Address space layout randomization is
exploitable if used in isolation [36] but all the exploits rely on
some form of indirect control flow transfers and return to libc
attacks. This guard relies on other guards to be secure. But the
guard is nevertheless effective in raising the complexity for po-
tential exploits.

The following security guards can be enabled on demand and
are not part of the default configuration.

Section guard: only (direct and indirect) function calls and func-
tion returns are allowed to transfer control to a function in a
different code region. All other control transfers (like jumps or
indirect jumps) are verified to target the code of the same sec-
tion. This guard prohibits unintended control flow transfers.

Call guard: call instructions are verified to transfer control to an
existing function by checking the exported symbols of loaded
objects. If the call does not target a symbol defined in any of
the loaded libraries or the program itself then the call is not
allowed. This guard prohibits arc attacks and the redirection of
function pointers to unintended code.

Protection of internal data structures: adds an additional heavy-
weight guard that uses mprotect to disable write access to all
internal data structures (e.g., mapping table, code cache, inter-
nal translator data) of the binary translator whenever translated
code is executed. This way translated code is unable to change
translated code or any other internal data structures of the bi-
nary translator. Even if this guard is not active all pointers to
the internal data structures are pruned from the stack. An ex-
ploit is unable to detect the internal data structures due to the
virtualization guarantees of the translator.



The current guard configuration does not allow applications
with self-modifying code. An application with, e.g., a JIT compiler
could be handled by specifying at exactly what regions the com-
piler will be emitting code and using an additional guard for these
regions.

3.2 Policy-based system call interposition

All the potentially dangerous functionality of a program is per-
formed by system calls (e.g., I/O, network sockets, privilege escala-
tion). A mechanism that restricts a program’s use of system calls is
a useful and important extension to fault isolation. Code based ex-
ploits are handled by the software-based fault isolation. Data driven
attacks where no malicious code is executed (e.g., integer overflows
and type errors) are caught whenever a system call is executed that
does not conform to the application’s policy.

Policy-based system call interposition relies on software-based
fault isolation and the rewriting and replacement of system calls.
All system calls through both sysenter, and int 80 instructions
(Linux uses and supports both systems [21]) are rewritten by the
binary translator to execute a validation function before they are
allowed. The sandbox offers an extensible system call interposition
framework that makes it possible to allow or disallow system calls
based on the call stack, the system call number, and the parameters.

The sandbox validates system calls through handler functions
and by a policy that is loadable at runtime. A policy has the advan-
tage that combinations of allowed and disallowed parameters can
be specified in a simple way. Handler functions on the other hand
enable in-depth verification of arguments and can use state (e.g., a
list of previous mmap calls, arguments, and call locations) to track
application behavior throughout the execution of different system
calls. The combination of a policy to handle simple and static com-
binations of system calls and handler functions for complex system
calls enables an even tighter and more dynamic security model than
policies alone.

3.2.1 Special handler functions

The privileges of a program can be managed by specific handler
functions on a per system call basis. Every system call can use a
different handler function that analyzes call stack and arguments.
The handler functions are a part of the binary translator and have
full control over the application. Handler functions may allow the
system call, abort the program, or redirect the system call and
return a fake value.

These redirected system calls can be used to implement differ-
ent functionality in user-space. If a system call is redirected then a
user-space function is executed whenever the system call is called.
This function runs in the context of the binary translator and can
execute arbitrary other system calls (redirected system calls can,
e.g., emulate or isolate vulnerable system calls). More generally
redirected system calls add additional validation of arguments that
are passed to the kernel.

The sandbox uses additional handler functions to check all
mmap, mprotect, open, and openat system calls. For mmap

and mprotect the sandbox checks if the arguments overlap or
touch any internal data structures that the binary translator uses.
If there is a conflict then the application is terminated. For the
open and openat system calls the sandbox uses stat to check

mode:whitelist /* deny unlisted syscalls */

open("/dev/arandom", O RDONLY):allow

open("/dev/urandom", O RDONLY):allow

time(null):allow

getuid32():return(0) /* return static uid=root */

close(*):allow /* close open files */

write(1,*,*):allow /* stdout */

access("/etc/*",*):allow

// implicit: access("*",*):deny

Figure 3. Example excerpt from a policy file that uses white listing
as default policy. It allows two specific files to be opened, execution
of the time(), close(), and write() system calls. getuid()
returns 0 (root), and access() is restricted to /etc/* only.

if the file is in the black list or tries to access protected files like
/prof/self/maps that would leak information about the sandbox.

The handler functions are used as an extension of the policy
system. Handler functions enable additional control logic to guard
and tighten the allowed actions of the application.

3.2.2 Policy-based system call authorization

The system call authorization framework for policy-based system
call authorization builds on process sandboxing and extends the
system call interposition framework. The sandbox loads a user-
defined policy at startup to decide for each individual system call if
it is allowed or not.

If a system call and its arguments do not match the policy (e.g.,
the configuration is not present in the policy for white-listing, or is
present for black-listing), the isolation system assumes that there is
an error, bug, or security problem and terminates the user process.
Additionally it can signal the system operator that an authorization
fault occurred.

The policy file contains a list of system calls and parameter-sets
that are allowed or denied. This allows a combination of white-
listing and black-listing of different argument combinations per
system call. Arguments are encoded as integers, pointers, strings,
null, or asterisk for an unspecified value that matches any input.
Partial strings can be matched with an appended asterisk (e.g.,
"/etc/apache2/*"). Effective path arguments can additionally
be evaluated using stat system calls. Possible actions for each
combination are to allow the system call, to abort the program, or to
return a predefined integer value. See Figure 3 for an excerpt from
a policy file and Figure 4 for an overview of runtime data structures
needed for the policy-based authorization.

The redirected system calls can be used to change and test
the behavior of a program if certain system calls return special
values (e.g., many programs behave differently if they are run
as root, so returning a fake value for getuid is useful in some
cases). The current policy is limited to returning a static fake value.
But the system call interposition framework can be used to call
any user supplied function to handle a specific system call. This
functionality enables, e.g., additional stateful security checks, the
emulation of (obsolete or unsafe) system calls, virtualization or
reimplementation of specific system calls in user space, or can be
used for whole kernel emulation in user-space.



Depending on the first line of the policy file either white-listing
or black-listing is used. Black-listing can be used, e.g., for testing
or implementation of new features. For security policies we assume
that a white-listing approach is taken. An unmatched combination
of parameters for a specific system call either aborts the program if
white-listing is used, or is allowed if black-listing is used. White-
listing specifically allows system calls and implicitly denies all
other system calls. Black-listing denies or redirects specific system
calls and implicitly allows all unspecified system calls.

3.2.3 TOCTTOU attacks

Time Of Check To Time Of Use (TOCTTOU) [40] attacks rely on
the fact that a second thread can replace the arguments on the stack
of another thread after they have been checked by the interposition
framework but before the system call is executed.

Each thread of an application is guarded by a sandbox. The se-
curity guards inside each sandbox prohibit the execution of mali-
cious code. A thread that tries to execute an illegal control flow
transfer or illegal code terminates the application immediately. This
setup prevents a second thread from using injected code to rewrite
the system call arguments after they are checked by the policy-
based system call interposition.

A hypothetical exploit could use a data-based exploit in one
thread to corrupt a data-structure that is used in both threads after
the system call interposition framework validated the arguments. To
guard against such an exploit, we must restrict access to a thread’s
stack by other threads. The randomness introduced by the thread
scheduler and random stack locations suffices in many scenarios to
limit the risk of such an exploit.

The combination of the additional fine-grained checks of the
additional security guards in the isolation layer and the policy-
based system call interposition make TOCTTOU attacks based on
code injection impossible.

4. Implementation

libdetox uses fastBT [31, 32], a generator for binary translators to
generate a lean and efficient table-based user-space binary transla-
tor that follows the description in Section 2. The generated binary
translator is extended by the security guards to enforce fine-grained

.

.

.
5: open(string, int)
6: close(int)
.
.
.

System call definition:

("/etc/apache2/*", *): allow
("/var/www/*", *): allow
("*", *): deny

open:

(*): allow

close:

Figure 4. Runtime data structures for a given policy with examples
for the open() and close() system calls.

user-space fault isolation and to implement the system call interpo-
sition framework.

This section discusses the implementation of the software-based
fault isolation mechanism and highlights the changes needed to im-
plement a secure binary translator. The policy-based authorization
framework is then implemented on top of the software-based fault
isolation.

4.1 Software-based fault isolation

The four binary translators that we evaluated for user-space fault
isolation and the system call interposition framework are PIN [28],
HDTrans [37, 38], DynamoRIO [9, 10, 23], and fastBT [31, 32].
These binary translators use different approaches to implement
user-space binary instrumentation and isolation. HDTrans and
fastBT use a table-based approach that translates instructions based
on translation tables. DynamoRIO and PIN translate the machine
code into a high level intermediate representation (IR) and compile
the translated IR back to machine code.

Important features are that the binary translator must cover the
complete IA-32 instruction set and that no pointers to thread local
data structures are left on the stack if the binary translator uses the
same stack as the user-program. To offer an attractive alternative
to full system translation the overhead for the binary translation
must be low, both for the translation of new instructions and for the
execution of translated code.

libdetox uses fastBT because (i) the complete IA-32 instruction
set is supported, (ii) the binary translator is very modular and
extendable by new handler functions that control the low-level
translation of control instructions, and (iii) the trusted computing
base is small. libdetox consists of only a couple of thousand lines
of code.

The binary translator framework translates all control flow in-
structions and ensures that the execution stays inside the code
cache.

All internal data is allocated on a thread-local basis. Each thread
has a private code cache and runs its own translator. This removes
the need for inter-thread synchronization.

libdetox uses fastBT as a tool for software-based fault isolation.
The security concepts presented in this paper are not specific to
fastBT, but can be implemented in any table-based binary trans-
lator. Details of the implementation of the binary translator are
available in [32]. The additional security guards that are discussed
in 3.1.3 are an extension implemented on top of the binary transla-
tor and crucial to guarantee isolation.

The combination of fastBT with the additional security guards
ensures the first security principle defined in Section 3. Illegal
instructions and instructions that redirect control flow to malicious
code lead to a direct abort of the program through the binary
translator.

4.1.1 Thread and process handling

All system calls that create threads or new processes are handled in
a special way. If the arguments are allowed according to the policy
then the system call is instrumented such that the new thread or
process is started in a new libdetox instance.



If a new thread is started then a trampoline is executed first
that starts a new instance of the binary translator that controls the
execution of the new thread. For each new process that is started
the binary translator is injected with a LD PRELOAD directive (if the
started program supports dynamically shared libraries, otherwise
the process creation is aborted).

4.1.2 Additional guards

libdetox reads all symbol and section information when the pro-
gram or shared libraries are loaded. This information is imported
into data structures of libdetox that are used at runtime to imple-
ment the additional security guards.

The guards from Section 3.1.3 are executed either when new
code is translated or whenever the translated instruction is exe-
cuted in the application. Executable space protection, executable bit
removal, and signal handling are implemented using static imple-
mentations during the translation process. The section guard, call
guard, and return address verification need both a check during the
translation and an additional dynamic check. The check during the
translation process is used for fixed or precomputed targets and the
dynamic check is patched into the translated code for all dynamic
control flow transfers.

Secure context transfers are implemented through changes in
the binary translator. The optimizations for indirect control flow
transfers are modified so that no pointers to the code cache are left
on the stack of the user-program. For example a return instruction is
translated into code that (i) executes a lookup in the mapping table,
(ii) stores the translated target address in a local data structure, and
(iii) uses an indirect jump through that data structure to redirect
the control flow to the translated target. Using such trampolines
guarantees that pointers to the code cache are never left on the
application stack and there is no need to overwrite return addresses
of the original application which would leak information about the
sandbox.

4.2 Policy-based system call authorization

All system calls through interrupts and the sysenter instruction
are rewritten by the binary translator. The system call interposi-
tion framework is implemented on top of the binary translator to
wrap all system calls into individual evaluation functions. The sys-
tem call interposition framework then checks the system call and
its arguments against the loaded policy. libdetox loads the policy
and parses it into an array of parameter lists. Per system call a pa-
rameter list is generated with combinations of valid parameters. If
the user program wants to execute a system call then the list is
checked. If a parameter-set matches then the system call is either
executed or a fake value is returned. The process is terminated if no
parameter-set matches. This enforces the second security principle.
The combination of these two principles makes user-space isolation
and encapsulation possible and secure.

5. Evaluation

This section evaluates the libdetox user-space virtual machine. Low
overheads for isolation and sandboxing features show that the lib-
detox approach is highly attractive. The discussion about system

call coverage shows that most programs execute a low number of
specific system calls with a limited set of arguments.

The Apache case study in Section 5.3 shows that it is possible
to isolate Apache in a user-space sandbox that implements a hard
security policy with low overhead.

The benchmarks are run under Ubuntu 9.04 on an E6850 Intel
Core2Duo CPU running at 3.00GHz, 2GB RAM, and GCC version
4.3.3. Averages are calculated by comparing overall execution time
for all programs of untranslated runs against translated runs. The
SPEC CPU2006 benchmarks are presented as a way to compare
performance with other systems.

5.1 Isolation and sandboxing overhead

This section provides an analysis of the runtime overhead intro-
duced through libdetox. The overhead is separated into (i) BT over-
head alone, (ii) overhead for system call validation and executable
space protection, and (iii) full protection using mprotect to guard
the internal datastructures from attacks against the sandbox.

Table 1 displays overheads for all SPEC CPU2006 benchmarks
compared to an untranslated run. The different configurations are:

BT: A configuration without additional security features, showing
the overhead of the isolation and binary modification toolkit.

libdetox: This configuration shows libdetox’s overhead with the
default guards enabled.

libdetox+mprot: The last configuration shows full encapsulation
including protection of internal data structures using explicit
memory protection through mprotect.

Table 1 uses the standard SPEC CPU2006 benchmarks and
shows the overhead for long running programs. The average slow-
down for binary translation (and no other transformation) for the
full SPEC CPU2006 benchmarks is 6.0%. The libdetox security ex-
tensions increase the overhead to 6.4%. The full protection mech-
anism results in an overhead of 8.2%. The overhead for binary
translation and basic libdetox protection for most programs is be-
tween −3.5% and 4.0%; some benchmarks like 400.perlbench,
433.gcc, 453.sjeng, 483.xalancbr, 447.dealII, and 453.povray result
in a higher overhead of 23% to 60% due to many indirect control
flow transfers that cannot be optimized. The speedup of some pro-
grams is achieved by a better code layout through the translation
process. libdetox adds static overhead per translated block and per
system call. The SPEC CPU20006 benchmarks have a low num-
ber of system calls and high code reuse, which is typical for server
applications. Therefore the libdetox extensions add no measurable
overhead to these programs.

libdetox with full protection leads to more overhead (8.21%
on average) because the number of system calls increases. But
the overall overhead is low for these benchmarks, although the
translation overhead is higher. The translation overhead is still
small compared to the runtime of the translated program. As soon
as all active code is translated, no further memory protection calls
are necessary.

5.2 System call coverage

Figure 5 shows a policy that covers all SPEC CPU2006 bench-
marks. This policy is not secure and only used to evaluate the over-



Benchmark BT libdetox +mprot
400.perlbench 55.97% 59.88% 74.69%
401.bzip2 3.89% 5.39% 5.54%
403.gcc 20.86% 22.68% 55.56%
429.mcf -0.49% 0.49% 0.25%
445.gobmk 18.17% 14.57% 16.69%
456.hmmer 4.64% 4.75% 5.72%
458.sjeng 24.62% 27.65% 31.22%
462.libquantum 0.98% 0.98% 0.98%
464.h264ref 6.17% 9.20% 9.20%
471.omnetpp 13.91% 14.11% 15.12%
473.astar 3.66% 3.83% 4.33%
483.xalancbmk 23.72% 27.22% 31.27%
410.bwaves 2.12% 2.68% 3.91%
416.gamess -3.50% -4.20% -0.70%
433.milc 0.97% 2.18% 3.26%
434.zeusmp -0.13% -0.25% 0.13%
435.gromacs 0.00% 0.00% 0.00%
436.cactusADM 0.00% -0.66% 0.00%
437.leslie3d 0.00% 0.00% 0.86%
444.namd 0.65% 0.65% 0.65%
447.dealII 44.20% 41.12% 43.66%
450.soplex 7.25% 5.02% 7.25%
453.povray 22.10% 25.14% 26.52%
454.calculix -1.68% -0.56% -1.12%
459.GemsFDTD 1.79% 1.79% 2.68%
465.tonto 9.19% 10.27% 12.43%
470.lbm 0.00% 0.00% -0.11%
482.sphinx3 2.36% 2.25% 1.89%
Average 6.00% 6.39% 8.21%

Table 1. Overhead for different configurations executing the SPEC
CPU2006 benchmarks (relative to an untranslated run). +mprot:
libdetox with full memory protection.

head of policy-based user-space software-based fault isolation. The
policy is a summary of all individual policies for each SPEC bench-
marks so that the overhead for all benchmarks can be evaluated in a
single run of the SPEC benchmark script. Differences to real poli-
cies include the over-generalization of attributes and the lax han-
dling of the open, unlink, mmap2, unlink, and stat64 system
calls. A production policy would tighten the policy for a single
program and explicitly list all needed files and directories or re-
strict these system calls to specific directories. These system calls
are used to access many data files in each individual benchmark
and for each data size. The long list of explicit configurations was
abbreviated through over-approximation to give a clearer picture.
A safe policy for a single specific SPEC benchmark does not result
in any measurable additional overhead.

Figure 5 shows that all SPEC CPU2006 benchmarks need no
more than 38 different system calls with a few more individual
parameter configurations.

The second case study shows nmap, which is a network explo-
ration and security tool that checks and fingerprints running ser-
vices of servers over the Internet. libdetox virtualizes and encapsu-
late version 4.53 of nmap into a secure sandbox. The policy shown
in Figure 6 shows a set of rules that restricts nmap to a few different

mode:whitelist /* not listed: abort program */

brk(*):allow /* memory management */

mmap2(null,*, PROT READ | PROT WRITE, \
MAP ANONYMOUS | MAP PRIVATE, -1,*):allow

mremap(*,*,*, MREMAP MAYMOVE):allow

munmap(*,*):allow

execve("/bin/echo",*,*):allow /* allowed prog.s */

execve("/opt/cpu2006/bin/echo",*,*):allow

execve("/sbin/echo",*,*):allow

execve("/usr/bin/echo",*,*):allow

execve("/usr/local/bin/echo",*,*):allow

execve("/usr/local/sbin/echo",*,*):allow

execve("/usr/sbin/echo",*,*):allow

clone(*,null,0,null):allow /* allowed file I/O */

close(*):allow

dup(*):allow

fcntl64(*,*):allow

fstat64(*,*):allow

ftruncate64(*,*):allow

getcwd("*",*):allow

ioctl(*,*):allow

llseek(*,*,*,*, SEEK SET):allow

llseek(*,*,*,*, SEEK CUR):allow

lseek(*,*, SEEK SET):allow

lseek(*,*, SEEK CUR):allow

lstat64("/opt/cpu2006/benchspec/CPU2006/*", \
*):allow

open("*",*):allow /* relaxed for spec */

pipe(*):allow

read(*,*,*):allow

stat64("*",*):allow

rmdir("foo"):allow /* remove foo directories */

unlink("*"):allow /* unlink relaxed for spec */

write(*,*,*):allow

writev(*,*,*):allow

futex(*, FUTEX PRIVATE | FUTEX WAKE, 0x7FFFFFFF, \
null,*,*):allow /* process mgmt */

waitpid(*,*,0):allow

rt sigprocmask(SIG BLOCK,*,*):allow /* signals */

rt sigprocmask(SIG SETMASK,*,null):allow

getegid32():allow /* information retrieval*/

geteuid32():allow

getgid32():allow

getrusage(RUSAGE SELF,*):allow

gettimeofday(*,null):allow

getuid32():allow

setrlimit(RLIMIT DATA,*):allow

ugetrlimit(RLIMIT DATA,*):allow

nanosleep(*,*):allow /* sleep and time */

time(null):allow

times(*):allow

Figure 5. A relaxed policy to measure the sandboxing overhead
for the SPEC CPU2006 benchmarks. Some rules are relaxed to
facilitate the run of the spec benchmark scripts.

system calls, e.g., opening any network connection. The nmap pro-
gram uses 23 different system calls, individual parameters are used
to open 15 different files, use stat64 on 6 files, and use access

for two files. This policy sandboxes the network scanner, and an at-
tacker cannot escalate privileges if one of the many nmap detection
modules contains exploitable code.



mode:whitelist /* not listed: abort program */

brk(*):allow /* memory management */

/* due to shared libraries all mmap calls must be

additionally checked in a handler function for

a set exec bit. */

mmap2(*,*,*,*,*,*):allow

munmap(*,*):allow

futex(*,*,*,*,*,*):allow /* thread futexes */

access("/etc/ld.so.nohwcap",*):allow /* limit I/O */

access("/usr/share/nmap/nmap-services",*):allow

close(*):allow

fcntl64(*, F GETFL):allow

fcntl64(*, F GETFD):allow

fcntl64(*, F SETFL, O RDWR | O NONBLOCK):allow

fstat64(*,*):allow

ioctl(*, TIOCGPGRP, *):allow

llseek(*,*,*,*,*):allow

newselect(*,*,*,*,*):allow

open("/dev/arandom",*):allow

open("/dev/tty",*):allow

open("/dev/urandom",*):allow

open("/etc/host.conf",*):allow

open("/etc/hosts",*):allow

open("/etc/ld.so.cache",*):allow

open("/etc/localtime",*):allow

open("/etc/nsswitch.conf",*):allow

open("/etc/passwd",*):allow

open("/etc/resolv.conf",*):allow

open("/lib/i686/cmov/libnsl.so.1",*):allow

open("/lib/i686/cmov/libnss compat.so.2",*):allow

open("/lib/i686/cmov/libnss files.so.2",*):allow

open("/lib/i686/cmov/libnss nis.so.2",*):allow

open("/usr/share/nmap/nmap-services",*):allow

read(*,*,*):allow

stat64("/etc/localtime",*):allow

stat64("/etc/resolv.conf",*):allow

stat64("/home/test/.nmap/nmap-services",*):allow

stat64("./nmap-services",*):allow

stat64("/usr/lib/nmap/nmap-services",*):allow

stat64("/usr/share/nmap/nmap-services",*):allow

write(*,*,*):allow

socketcall(PF NETLINK, SOCK RAW, 0):allow /* net */

socketcall(PF INET, SOCK STREAM, IPPROTO TCP):allow

socketcall(PF FILE, SOCK STREAM | \
SOCK CLOEXEC | SOCK NONBLOCK, 0):allow

geteuid32():allow /* system information */

gettimeofday(*,*):allow

getuid32():allow

time(*):allow

uname(*):allow

ugetrlimit(*,*):allow

setrlimit(RLIMIT NOFILE, *):allow

Figure 6. Full policy covering and encapsulating the nmap net-
work scanner and all additional detection modules. Network access
is allowed as well as access to libraries and configuration files.

5.3 Apache isolation

The Apache 2.2.11 HTTP server is used to benchmark a daemon
that needs both access to local files and is accessible over the
network. libdetox encapsulates the Apache processes and threads
and only allows few system calls with restrictive parameter con-

figurations. Like the nmap policy in Figure 6 Apache is only al-
lowed to open specific files and access files in two directories
(/etc/apache2, and /var/www) and is not allowed to execute
other processes. On the other hand the daemon process is free to
open connections over the network.

Benchmark native BT libdetox
test.html 84.83s 97.47s 101.34s

22.48Mb/s 19.57Mb/s 18.82Mb/s
phpinfo.php 84.40s 98.63s 101.34s

3.28Mb/s 2.8Mb/s 2.73Mb/s
picture.png 249.87s 261.92s 266.98s

945.18Mb/s 901.67Mb/s 884.6Mb/s
Avg. overhead - 9.29% 12.06%

Table 2. The ab benchmark is used to compare a native run without
isolation to fast binary translation only, and libdetox with user-
space fault isolation and policy-based system call authorization.

The overhead for the Apache daemon was measured using the
ab Apache benchmark which used 10 concurrent instances to re-
ceive each file 1’000’000 times. Table 2 shows the overheads us-
ing different configurations. The test uses the following files: (i)
test.html, a static html file with 1.7kB, (ii) phpinfo.php, a
small php file that issues the phpinfo call, and (iii) picture.png,
a 242kB file.

The overhead to download a small file is 14.9% for binary
translation because of the high number of system calls needed to
open, read, and send the file. The overhead for libdetox is 19.5%.
For larger files, as seen by the numbers for picture.png, the
overhead of binary translation is 4.83% and 6.85% for libdetox.

An interesting feature is the throughput difference between
small and large files. Throughput is increased from 22.48Mb/s
to 945.18Mb/s for native runs and even more for libdetox, namely
from 19.57Mb/s to 901.67Mb/s, which is more than 46 times faster
compared to the small file.
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Figure 7. Overhead introduced through isolation, sandboxing, and
policy-based authorization for the Apache benchmarks



Figure 7 shows the overhead introduced through isolation and
sandboxing for the different Apache benchmarks. The numbers
show that libdetox introduces a moderate overhead of about 20%
for small static and small dynamic files. For larger files the over-
head drops to below 7%. The SPEC CPU2006 benchmarks in Sec-
tion 5.1 showed that the overhead for compute intensive programs
is even lower. The average overhead of libdetox for the Apache
web-server results is 12.06%, which makes user-space fault isola-
tion attractive.

6. Related work

Related work to the presented approach combines ideas from dif-
ferent fields of research. An important area are systems that enforce
some kind of security policy by either limiting the instruction set or
relying on some kernel infrastructure. Security can be enforced on
many levels. Some of them are limiting the system calls a program
can use, others limit the instruction set inside the application, or use
hardware extensions to limit the program.

An important characteristic of security systems is the granu-
larity they work on. Some systems use full system translation to
encapsulate and virtualize a complete running system. This offers
strong security guarantees as hardware virtualization extensions
can be used to separate different virtualized instances. A drawback
of these solutions is data exchange between programs running on
different virtualized instances and administrative overhead that is
needed to configure and secure every single instance. Process en-
capsulation on the other hand limits the code and system calls a
running process can execute.

This section discusses different alternate approaches to guar-
antee security. Full system translation offers the possibility to en-
capsulate complete systems and to guarantee security on a coarse-
grained system level. System call interposition evaluates an appli-
cation’s system calls and offers coarse-grained interposition on the
granularity of system calls. User-space isolation through dynamic
binary translation offers a fine-grained level of control about all ex-
ecuted control flow transfers. Static binary translation limits the in-
struction set and uses a static checker that validates the application
before it is run.

6.1 Full system translation

Full system translation virtualizes a complete system, including the
operating system and all hardware. Complete system virtualization
by QEMU [6] offers full encapsulation, but comes with high over-
head. Other full system virtualization tools like VMware [11, 15]
and Xen [4] rely on kernel or hardware support. Livewire [20] ex-
tends VMware to build an intrusion detection system around the
virtual machine. Ho et al. [25] present a protection system that uses
a Xen based virtualization approach that uses QEMU to emulate
individual instructions based on taint information.

A disadvantage of full system virtualization is that every virtual
machine is an independent system with its own configuration and
support needs. Additionally only very coarse-grained events can be
observed from such a high level of abstraction. From a security and
safety perspective the encapsulation of such an approach is needed
but without the complexity of administrating individual systems.
Our sandbox offers user-space process isolation, combining encap-
sulation with fine-grained security on a single system.

6.2 System call interposition

System call interposition uses either a kernel module or ptrace sup-
port to implement a control mechanism on the level of system
calls. These systems share several drawbacks. For one the protec-
tion mechanism is very coarse-grained and they do not detect the
execution of malicious code until a system call that is not part of the
policy is executed. These systems miss exploits that target opened
files or use the policy’s allowed system calls and are often prone to
TOCTTOU attacks. These file changes evade detection of the se-
curity systems that validate purely on system calls. A second con-
cern is the overhead introduced due to context switching. An ex-
pensive context switch has to be performed whenever a policy rule
is checked. A third drawback is that these systems rely on trusted
code in the kernel to stop the monitored program which poses an
additional security risk.

Janus [22] is a system call interposition framework that uses the
Solaris process tracing facility (ptrace) to allow one user mode pro-
cess to filter the system calls of a second process. This framework
builds on kernel support and has two drawbacks: (i) the traced ap-
plication is already in the kernel when it is stopped, a situation that
poses a potential security problem, and (ii) the overhead of switch-
ing between an inspecting process and the corresponding applica-
tion is high. MAPbox [1], AppArmor [5], SubDomain [13], and
Consh [2] extend the idea of a ptrace interposition framework by
implementing policy-based authorization. Tal Garfinkel analyzed
practical problems of system call interposition in [18].

The Linux kernel offers an API for security modules [41] that
can be used to implement many kernel-based coarse-grained secu-
rity extensions. Systrace [33] uses a kernel module to implement
a system call policy. Some global system calls are validated in the
kernel with low overhead, for all other system calls the program is
stopped and a user-space daemon decides based on the parameters
if the system call is allowed or not. Switchblade [16] enforces a sys-
tem call policy using an in-kernel system call model and dynamic
taint analysis. Ostia [19] prevents TOCTTOU attacks by using a
proxy and a delegation model to delegate system calls to different
processes or threads. Alcatraz [27] is a hybrid isolation approach
that offers unrestricted read access to a sandboxed application but
redirects all writes to a buffer which can be examined before it is
committed. Unfortunately this approach does not protect against
data leaked over the network or processes that use local root ex-
ploits to gain privileges.

Our sandbox uses a fine-grained level of control that checks in-
dividual instructions and makes it impossible to execute injected
code. Each thread of an application runs in its own sandbox. Each
sandbox is secured against the execution of malicious code, there-
fore a second thread cannot execute code that races between the
system call argument check and the execution of the system call
thereby removing the threat of TOCTTOU attacks.

6.3 User-space isolation through dynamic binary translation

Vx32 [17] implements a user-space sandbox built on BT that uses
segmentation to hide the internal data structures. Due to the use of
segmentation the Vx32 system is limited to 32-bit code. Interrupts,
system calls, and illegal instructions are translated to traps that
call special handler functions. The proposed BT results in a high
overhead as there are no optimizations for indirect control transfers.



The traps for system calls offered by Vx32 are targeted towards a
reimplementation of the system calls and are not intended for a
policy-based system call authorization framework.

Strata [34, 35] is a safe virtual execution environment using
software dynamic translation. It uses dynamic binary translation
to isolate user-space programs and implements a basic system call
interposition API. This API is used to instrument individual sys-
tem calls. The translation framework is neither limited to a single
system nor to a single architecture. Strata uses binary translation to
enforce a non-executable stack but there are no additional security
guards that limit return to libc attacks or heap based overflows.

Program shepherding [26] uses the DynamoRIO [9, 10, 23]
framework to safeguard running applications. A single policy is
hardcoded and enforced using binary translation. The binary trans-
lator adds additional checks to restrict code origins and to control
the targets of indirect control transfers.

Our approach implements a user-space sandbox and extends this
sandbox with additional security guards that check the execution
of application code at runtime. System calls in our approach are
not replaced by software traps but are validated through a policy-
based system call authorization framework. Additionally libdetox
does not depend on specific hardware features like segmentation, a
feature that is not present on AMD64 and hinders portability. The
policies used in the sandbox can be refined and changed without
the need to recompile the safe execution platform.

6.4 Security through static binary translation

The Google Native Client [42] executes x86-code in a sandbox.
The native client uses the same instruction padding techniques
as presented in the software-based fault isolation [39] system by
Wahbe et al.. The instruction set is limited to a safe subset of the
IA-32 ISA, making illegal operations impossible. A verifier checks
if the program is valid before the program is executed without any
additional isolation. Such a system limits the possible range of
used instructions, the programs must be linked statically, and no
dynamic libraries can be used. Programs must be compiled with a
custom-tailored compiler and special libraries.

PittSField [29] implements a static binary translation and check-
ing tool used for software-based fault isolation. The static rewriting
algorithm (i) aligns targets for control transfers on 16 byte bound-
aries, (ii) changes control transfer instructions so that targets are
always 16 byte aligned, and (iii) separates data and code regions
by adding additional instructions to force pointers to point to data
or code. This static translation results in an overhead of 13% for
instruction alignment and 21% for data verification as reported
in [29].

The PittSFIeld approach only verifies that a program executes
valid instructions and writes to the correct data regions. Our sand-
box offers the executable space protection mechanism which write
protects application and library code and implements full protec-
tion of the internal data structures using kernel memory protection.
Additionally our sandbox approach offers a system call interpo-
sition framework which validates every single system call and its
arguments.

The PittSFIeld approach validates that a return address on the
stack is in the code region and not in the data region. But a carefully
designed return to libc attack is possible. Our approach disables

return to libc attacks by only allowing the execution of a safe
subset of system calls that are defined by a custom-tailored policy,
checking return addresses, and verifying all control transfers.

7. Conclusion

We present an approach to low overhead software-based fault iso-
lation that implements fine-grained security in user-space. This ap-
proach limits programs in their use of system calls and execution
of privileged instructions through flexible per-process policies and
a configurable system call interposition framework.

An implementation prototype of our approach called libdetox
uses dynamic binary translation to support the full IA-32 ISA with-
out kernel support. Full binary translation adds security guards, de-
tects code injections, guards dangerous instructions at runtime and
interposes system calls with an authorization framework. System
calls are validated based on individual handler functions for special
system calls and a policy that allows to control the allowed param-
eters on a per system call basis.

The approach presented here is attractive for many scenarios
that look for a low-cost and widely useable way to secure a system.
Applications are isolated and encapsulated while using a shared
system image with a single system configuration, and there is no
need to virtualize a complete system. Our approach is the first
virtual execution system that combines a fast and efficient software-
based translator with additional guards and a policy-based system
call interposition framework. This combination results in a low
overhead software-based fault isolation and encapsulation system.
Such a system then can guard daemon processes like the Apache
web-server to prevent unwanted access to system resources.

As users (and system administrators) look for ways to deal with
the wide range of security problems, libdetox presents a simple yet
highly attractive approach to protect a system against a wide range
of attacks.
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