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Abstract
Transactional memory (TM) is an attractive platform for par-
allel programs, and several software transactional memory
(STM) designs have been presented. Here we explore several
optimization opportunities to adapt to the running program
and to adapt parameters that are optimized for the average
case. Depending on the program the transactional load can
vary per thread (e.g., client/server threads), or the program
uses multiple phases of computation with different transac-
tional loads. Therefore it is important that the STM adapts to
the current situation, and that the adaptation process is short,
efficient, and thread-local.

We present adaptSTM, a competitive, word-based STM
library that is based on a global clock and an array of com-
bined global versions (timestamps) and locks. To keep track
of transactional data adaptSTM implements a multi-level
buffer and uses read-set extension to achieve competitive
performance.

The fine-grained adaptation system measures important
runtime parameters like read- and write-locations, commit-,
and abort-rate, and is able to adapt important parameters like
write-set hash-size, hash function, and write strategy based
on runtime statistics on a per-thread basis. Using the STAMP
benchmarks, adaptSTM is compared against two other STM
libraries, TL2 and tinySTM.

adaptSTM outperforms TL2 for all benchmarks ex-
cept SSCA2, and offers performance that is competitive
with tinySTM for low-contention benchmarks; for high-
contention benchmarks adaptSTM outperforms tinySTM.
Comparing adaptSTM to TL2 results in an average speedup
of 43% for 8 threads and 137% for 16 threads. The speedup
results from the read-set extension, several non-adaptive op-
timizations and the fine-grained adaptation system. Adapta-
tion alone increases performance on average by 4.33% for
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16 threads, and up to 10% for individual benchmarks, com-
pared to adaptSTM without active adaptation.

1. Introduction
Transactional memory attempts to replace locks by execut-
ing critical sections in a transactional manner. Transactions
are well known from databases and can be used to group
several instructions into one atomic block that is atomically
committed to memory.

Transactional memory promises the speed of fine grained
locking without requiring a low-level view of the system.
The programmer specifies atomic sections and the transac-
tional memory accesses. The runtime system ensures mutual
exclusion.

Transactional memory can be implemented in software
(STM), in hardware (HTM) or as a hybrid approach (HyTM).
The use of an array of locks is the reason why STM systems
can reach performance as good as a well written non-STM
program that uses fine grained locking without the added
complexity and code to handle these locks efficiently.

Most current transactional memory systems are imple-
mented in software. The advantage of STM systems is that
different algorithms and parameters can be tested without
hardware development costs. With careful design the over-
head of STM systems can be as low as about 40 instructions
per transactional read or write on average (and could be even
lower in a low-level assembler implementation).

Current STM systems are the result of many engineering
decisions. There is no single decision which is responsible
for good performance. Only a careful selection of different
parameters results in a competitive baseline.

The contributions of this paper are:

• adaptSTM, a fast adaptive STM library that collects run-
time information and adapts to the given workload as
well as to phase changes.

• A fine-grained, thread-local, low overhead adaptation
mechanism that handles phase changes and different
thread workloads concurrently.

• A detailed analysis of the presented thread-local adaptive
parameters using the STAMP [3] benchmark suite as well
as benchmarks comparing the adaptSTM library to the
current versions of TL2 [6] and tinySTM [10].
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The rest of the paper is organized as follows: Section 2
presents an overview over general STM parameters, Sec-
tion 3 shows some implementation details, followed by
Section 4 showing the advantages and possibilities of a
fine-grained thread-local adaptive STM system. Section 5
presents benchmarks relative to current STM implementa-
tions and offers an evaluation of the different adaptive pa-
rameters. At last Section 6 concludes.

2. Design decisions and related work
Early STM systems [11, 12, 14, 15, 20, 26] evolved out
of limited hardware TM systems. STM systems are either
word-based or object-based and work on word or object
granularity. Most of the current word based STM implemen-
tations agree on general design decisions. They use a global
locking table [5, 7, 8, 13, 22, 25, 27] and a hash function
to distribute the available locks over the complete memory
region. All STM systems keep per transaction information
about accessed locations. Local read-sets and write-sets are
used to verify committability of transactions, and write-sets
are used to undo transactions upon conflicts or aborts.

One other common criterion is the use of a global clock [4,
23, 24, 28]. The global time is sampled at the start of the
transaction and the version of write-locations is set to the
current time in the commit phase. This simplifies validation
of reads and writes as the STM system only checks if the
version (timestamp) of the accessed address is smaller or
equal than the start time of the current transaction.

Two current fast lock-based STM systems where the
source code is available are TL2 [4, 6] and tinySTM [9, 10].
Both systems follow the general principles in this section
and use a combined lock/version-array and a global clock.
TinySTM is based on a single-version, word-based variant
of the lazy snapshot algorithm [23]. These current systems
are used to compare between different design decisions and
optimizations.

The book Transactional Memory [18] by Larus and Ra-
jwar gives an overview about the history of many TM sys-
tems. It shows different STM designs and includes imple-
mentation details.

But just like current STM implementations agree on gen-
eral design decisions they differ in subtle and important de-
tails. The following sections will give more details about im-
portant design decisions and trade-offs for an efficient STM
implementation.

2.1 Locks and versions
Many lock based STM systems use a single combined global
array [8, 13, 16, 25] for locks and versions (timestamps)
similar to TL2 and tinySTM. Each entry in the global lock
array covers some area of memory dependent on the hash
function and contains either the version of that memory area,
or a pointer to the transaction that holds the lock for this
region.

The lowest order bit is used to distinguish between locks
and versions. If the bit is set, then the remaining bits contain
a version, otherwise the location contains a pointer to a
transaction which holds the lock for that memory region.

2.1.1 Hash function
The hash function used to map memory regions to locks
must be shared by all transactions running concurrently. A
good hash function ensures that concurrent reads and writes
to different addresses are mapped to different locks. Hash
functions have been studied for a long time [1, 17] but most
proposed algorithms are not applicable to STM systems, as
hashing is very frequent, must be fast, and perfect or near
perfect hashing is not needed.

To limit the number of instructions in the hashing func-
tion, most STM systems use a single right shift instruction
and a logical and to hash memory addresses to entries in the
lock/version table. This design is a trade-off between poten-
tially higher contention and speed of the hash function.

Under the assumption that a transaction accesses memory
locations close to each other (locality), shift hash functions
lead to another advantage. Nearby memory locations are
mapped to the same lock, thereby reducing (i) the number of
locks a transaction holds and (ii) the number of cache-lines
a lookup touches to access data.

2.1.2 Hash-table size
The size of the hash-table decides on the amount of memory
which is mapped to a single lock. There are some limita-
tions to the size of the hash-table: (i) the overall memory
consumption of the STM library must be considered, espe-
cially for a 64bit word-size, (ii) the complete hash-table must
be initialized during start-up, and whenever the global clock
is reset, and (iii) there is a trade-off between the potential
lock contention and the overall number of locks a transac-
tion holds.

As the hash-table gets larger, the locking of the STM
system will be more fine grained with the advantage of
less false lock contention and the disadvantage of additional
overhead for an excessive amount of locks.

2.1.3 Locality and granularity
Locality and lock granularity can be tuned by the hash func-
tion. If we assume a 64bit pointer, and a hash function like
addr>>5, then the lock granularity is 25 resulting in a 32
byte wide stride. Depending on the size of the hash-table,
this region will be locked for all masked higher-order bits.

2.1.4 Lock acquisition strategies
Global locks can be acquired in different fashions. The main
design decision is to use either eager, encounter-time lock-
ing, or to use lazy, commit-time locking.

If the transaction uses eager locking it will acquire the
locks as soon as the first write to a memory location covered
by that lock is encountered. Eager locking signals concurrent
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transactions that a specific location is currently locked. This
scheme makes it possible to abort early on conflicts, but
might lead to cascading aborts where, e.g., T1 aborts due
to T2 holding a lock and T2 aborts due to other conflicts.
Eager locking can be used for read locations as well, this is
called visible reads. Transaction-local book-keeping of read
entries is called invisible reads.

Lazy locking uses local book-keeping to keep track of
locks and only acquires the locks at commit-time. This
avoids the problem of cascading aborts, but conflicts are
detected late.

Of the two reference systems TL2 uses lazy locking to
reduce the overall time a lock is held, tinySTM uses eager
locking to reduce contention. These two different strategies
give us a range to compare against.

2.2 Read-set, lock-set, and write-set
Every transaction needs some data structures to keep track
of transactional reads and writes, see Figure 1: (i) the read-
set saves tuples of version and read addresses that have been
read but not yet written, (ii) the write-set contains tuples of
addresses and old/new values that have been written during
the current transaction, and (iii) the lock-set contains tuples
of version and lock addresses that have been taken during
this transaction.

Combined global write lock / version array

Transaction

Lock 
list

Write 
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Read 
Hash

Write
list / 

buffer
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Figure 1. Overview of transaction-local data, including
read-set, lock-set and write-set.

The sets are transaction-local and are used to log the
transaction’s progress. Different data-structures can be used
to implement these sets. Most STM systems use arrays that
are expanded if the capacity is reached and combine lock-set
and write-set. This is a simple approach that scales up to a
few entries.

An alternative to arrays are hash-tables. Entries in the
read-set and write-set can be hashed into different hash-
tables for fast lookups. This strategy is beneficial if there
is a high number of addresses that is read or written.

The lock-set is only needed to scan trough taken locks
at a commit or an abort, and random lookup is not needed,
therefore an array suffices. The lock-set contains versions
and lock addresses for writes as well, so there is no need to

include the version in the write-set. This makes the write-set
smaller and increases cache locality of the written locations.

2.2.1 Bloom filter
A Bloom filter [2] is a probabilistic data structure, which
can add elements and test set membership of an element in
constant time. A Bloom filter consists of an array of length
m, initially set to 0. To add an element to the data structure
it is fed to k hash functions. The resulting hash value and
the value of the Bloom array are combined with a logical
or. To test for set membership the element’s hash value is
calculated. If the hash value contains one position with a
logic 1 where the Bloom filter contains a logic 0, then the
element cannot be part of the set.

In an STM system Bloom filters can be used for a faster
check if a location already exists in a read-set or write-set.
If the Bloom filter matches, then the element can be part of
the set, and the set must be checked. The probability of false
positives increases with the number of elements that were
added to the Bloom filter.

2.3 Write buffering
Any STM library must buffer transactional writes to ensure
correctness. There are two different orthogonal strategies to
buffer writes. A transaction can buffer the written locations
locally and write the data back as soon as the transaction is in
the commit phase (write-back or lazy-update). Alternatively
the transaction can write the data directly to memory and
cache the original value transaction locally (write-through
or eager-update). The use of write-through limits the choice
of the locking strategy to eager-locking as the location must
only be accessed by one transaction exclusively; write-back
can use both eager-locking and lazy-locking as data is only
written to main memory during the commit phase.

Both buffering strategies have their advantages and draw-
backs. A write-back strategy offers cheap abort possibilities,
but the commit phase takes longer as all data is written to
memory. With a write-through strategy the commit phase is
cheap, but an abort is more expensive as all write locations
need to be restored, if the transaction is aborted.

If the current program phase suffers under high con-
tention and a high abort rate, then write-back is beneficial,
otherwise write-through is faster.

2.4 Global clock
The system samples the global clock at the start of a trans-
action and compares all future read and write locations with
the given start time. If the time of any write location’s lock
is later, the transaction must be (i) validated and extended or
(ii) aborted.

If a transaction wants to commit it must validate its read-
set. If the validation succeeds, the global clock is increased
and the write location’s locks are updated to the current time
and the data is committed to main memory.
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The system of a global clock as used in adaptSTM and
other STM libraries like TL2 and tinySTM is only valid for
shared memory systems and might be a source of memory
contention. Especially if there exists no shared cache be-
tween cores this can lead to bus contention.

To avoid clock overrun on a 32bit system a simple check
can be used whenever a transaction starts to synchronize all
running transactional threads and to reset the clock. This
scheme adds no overhead to the frequent transactional read
and write operations and a single comparison to the start
of a new transaction. Before the clock overruns all threads
are synchronized and the locks and clock are reset. On 64bit
systems this clock overrun check is not needed as the 63bit
counter will not overrun for reasonable programs.

2.5 Memory allocation
To make transactional memory allocation possible, the STM
system must keep track of all memory allocations and deal-
locations. On a transaction abort deallocations must be un-
done and allocations must be freed. On a transaction commit
deallocations must be freed and allocations must be made
visible to all other threads. Hudson et al. [16] studied the ef-
fects of concurrent transactional memory allocation and pro-
posed an alternative memory allocator for STM systems in
more detail.

2.6 Adaptivity in current systems
Different forms of adaptivity already exist in current sys-
tems. Marathe et al. developed ASTM [19], an object-based
STM algorithm that extends DSTM [14] and adapts between
(i) lazy and eager lock acquire strategies and (ii) two forms
of meta-data for transactional objects. TinySTM showed that
an eager acquire strategy is better for lock based STMs be-
cause of the earlier conflict detection.

Yoo and Lee present a TM system that is extended by an
adaptive transaction scheduler [29]. The scheduler detects
high contention and throttles the number of concurrent trans-
actions.

TinySTM [10] is the first lock-based STM implementa-
tion which includes adaptive dynamic tuning. The imple-
mentation can adapt three parameters, (i) the size of the
global locking table, (ii) the number of shifts for the global
locking table’s hash function, and (iii) the size of the hi-
erarchical array. All three parameters must be tuned glob-
ally, which potentially limits scalability since all transactions
must reach a synchronization point and wait for each other.

3. Engineering of the non-adaptive STM
baseline

To implement a fast, competitive, and fine-grained adaptive
STM system it is crucial to select a good baseline implemen-
tation. The non-adaptive baseline implementation of adapt-
STM follows Section 2. This section describes trade-offs and

design decisions that enable competitive performance com-
pared to TL2 and tinySTM without adaptation.

3.1 Locks and versions
adaptSTM uses a single static global array for versions
and locks. Experiments with the STAMP [3] benchmarks
showed that a good average size for the lock hash-table
is 222∗sizeof(word) and a shift by 5 bit ((addr>>5)
& (HASH PATTERN)) offers a good tradeoff between fine-
grained locking and additional overhead for handling too
many locks. The variance for the used numbers of the hash-
table are tolerable throughout the STAMP benchmarks. The
runtime difference between a reasonable amount of shifts (4
to 6 bits), and different hash-table (220, 222, 224) sizes is not
dominant, as long as the number of hash-table entries is large
enough to support enough locks for all parallel transactions.

adaptSTM implements both eager locking, and lazy lock-
ing for write locations, but prefers eager locking to sup-
port write-back and write-through write strategies. The write
strategy is selected in the Makefile. An invisible read strat-
egy is used for read locations (other transactions are unaware
of other threads’ read locations).

3.2 Read-set, lock-set, and write-set
adaptSTM uses arrays for read-sets and lock-sets. For write-
sets we use a lazy multi-level approach that starts with a lin-
ear list. If the number of locations written reaches a specific
mark, the hash-table is built on the fly and future lookups no
longer need a sequential scan but use the hash-table for fast
access. Hash collisions are enqueued in a linear list.

To reduce the number of additional cache misses adapt-
STM takes special care to allocate write-sets next to each
other and aligned to cache lines. The use of lock-sets, the
multi-level sets, and the alignment strategy is new in adapt-
STM.

3.2.1 Optimizations for read-sets and write-sets
adaptSTM proposes different hash functions for transaction
local access to the write-set and read-set hash-tables. In
the STAMP benchmarks the number of locations read and
written is small in most cases. Hence a smaller hash-table
and a different hash function can be used compared to the
global lock table.

The correct choice of the size of the transaction-local
hash-tables is crucial for good performance. Whenever a
transaction starts (or reaches a certain number of read loca-
tions or write locations) the hash-tables must be initialized.
This initialization overhead is significant if the size of the
hash-table is not chosen properly. There is a trade-off be-
tween larger hash-tables that provide a faster lookup and a
higher initialization cost paid for every transaction.

Our experiments with the STAMP benchmarks showed
that a hash-table is not beneficial for read entries. For write
entries a hash-table for 32 entries is best on average, but the
optimal size varies greatly between benchmarks.
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Bloom filters of 64bit length are added to the read-set and
write-set. But the overhead of using a Bloom filter for the
read-set was still larger than only adding the elements to the
array. The speed gain of using a Bloom filter before the hash
lookup in the write-set is minimal.

3.3 Global clock and read-set extension
adaptSTM uses a global clock that is incremented whenever
a transaction commits.

If a transaction reads or writes a location, or tries to com-
mit, the version of an allotted lock can be larger than the
transaction’s version. A naive approach would abort when-
ever such a higher version is encountered. To reduce the
amount of retried transactions adaptSTM first tries to extend
the version of the transaction to the current global time. Ver-
sions of all untaken locks of the current transaction are val-
idated (for eager locking the locks corresponding to all read
locations are validated, for lazy locking all write locks are
validated as well). If no location has been written by another
transaction since the start of the current transaction (e.g., no
old value that is no longer existent was read in the current
transaction), then the version can be extended to the current
global time and the transaction can continue.

3.4 Contention management
There are various actions an STM can carry out if a lock is
currently taken by another transaction: (i) abort the current
transaction and retry, (ii) signal the other transaction to abort
and continue, or (iii) wait some time and retry to take the
lock. An adaptive contention management uses runtime data
to dynamically select the best approach.

adaptSTM implements a wait and retry strategy. The cur-
rent transaction is yielded a configurable amount of times.
The yield operations give the other threads the opportunity
to release the lock before the current transaction has to abort
itself.

4. Fine-grained adaptive STM
Current STM systems are optimized for the average case.
They cannot adapt to changing workloads and phase changes.
The advantage of an adaptive STM design is that the adap-
tation mechanism can tailor the STM parameters to current
phases and workloads at runtime.

The adaptation system collects important information at
runtime to justify a deliberate decision. Important metrics
include the transaction frequency, the number of unique read
and write locations, the number of hash-table collisions per
hash-table (e.g., for the global lock, read-set, and write-set),
the number of aborts compared to the number of successful
commits, and the quality of hash functions. The metrics are
used to select between different write strategies, to adapt
the local write-hash function, and to tune the locality of the
write-set’s hash-table.

4.1 Local vs. global adaptivity
There are two approaches to adaptivity. One is global adap-
tivity, which changes parameters for all running transactions,
and the other is local adaptivity, which changes parameters
locally, on a per-thread basis.

The advantage of local adaptivity over global adaptivity
is that every thread has its local settings, e.g., a reader-thread
will optimize the transactional parameters for best read per-
formance and a writer-thread can optimize for write through-
put. Global adaptivity can be a bottleneck for scalability as
it requires global synchronization and barriers for all threads
that make frequent changes of the adaptive parameters ex-
pensive. Each thread on the other hand can change the local
transactional settings whenever a transaction is (re-)started
without synchronization overhead.

The disadvantage of local adaptivity is that some changes
are not covered in this scheme, e.g., the global lock hash
function or the size of the global lock table cannot be
changed at runtime without synchronization, but must be
preset to a reasonable value. Some global changes like adap-
tation of the contention manager can be done without syn-
chronization if designed carefully. Even a switch between
eager and lazy locking can be implemented without syn-
chronization. Both locking schemes can be used in parallel
transactions, although fairness is not guaranteed as the prob-
ability for a conflict is higher in a lazy locking scheme.

4.2 Write-back vs. write-through
In a contented environment with a high abort rate it is ben-
eficial to use write-back instead of write-through to commit
write changes to memory.

adaptSTM samples the abort rate and decides to switch
between write-back and write-through, if the abort rate
reaches a threshold. The system uses the average of the last
64 transactions to calculate the abort rate.

4.3 Adapting the size of hash-tables
The size of the write-set hash-table is crucial for good per-
formance. If the hash-table is too large, the overhead of re-
setting the table every time a transaction starts is high. On
the other hand, if the table is too small, then the lookup will
be slow due to many hash collisions. In the current imple-
mentation hash collisions are queued in a linked list in the
same hash-table slot.

The adaptive system samples the moving average of
unique write locations per transaction. If the load of the
hash-table is more than 33% then the size of the table is
doubled. On the other hand, if the load is below 10% then
the size of the table is halved. Details about the adaptation
policy can be seen in Figure 2. The data were obtained using
the STAMP benchmarks and offer a good tradeoff between
hash-table size and hash-table collisions.
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Figure 2. Summary of the hash-table adaptation mecha-
nism, depending on the number of hash collisions and the
load in the hash-table.

4.4 Locality tuning for hash-tables
One criterion for low-level hash functions is speed. They
should not use more than a couple of instructions, otherwise
the cost of the hash function prevails over the better distribu-
tion.

An adaptive system can sample the number of hash colli-
sions as well as the quality of the hash function by measur-
ing hotness of individual bits, similar to Bloom filters. De-
pending on these measurements it is possible to switch to a
better hash function. A simple approach is to iterate through
a predefined set of hash functions, whenever the number of
collisions is above a specific mark.

4.5 Adaptive contention management
An extension of the basic contention management is to scale
the number of yield operations according to the overall con-
tention in the system. The current transaction is yielded an
amount of times relative to the number of retries for this
transaction.

This adaptive contention strategy implements a backoff
strategy which retries immediatly if the contention is low, or
yields an increasing amount of times in contented situations.

4.6 Adaptive statistics and overhead
An adaptive system needs to collect statistics about the
program and running transactions. Collecting performance
numbers and additional flexibility to adapt individual pa-
rameters incur some overhead, e.g., additional counters and
if-statements to select the correct setting.

Our non-adaptive system collects information about the
number of unique write locations, as well as the overall num-
ber of write and read locations. It is cheap to add additional
counters for the number of started transactions, committed
transactions, and aborted transactions, as these events are
relatively rare. More frequent events like lock collisions and
hash collisions are more expensive to count, but do not incur
a significant overhead.

5. Benchmarks and evaluation
This section presents an evaluation of different optimiza-
tions, adaptive parameters, and performance compared to
other STM systems based on the STAMP [3] benchmark
suite.

The STAMP benchmark suite is designed for transac-
tional memory research and contains a collection of paral-
lel C programs. The parallel code in the benchmarks uses
coarse-grained transactions. Inside a transaction all transac-
tional read and write operations are instrumented and redi-
rected to the STM library. The given programs are:

1. Bayes: A Bayesian network learning benchmark, using a
hill-climbing strategy with both global, and local search.

2. Genome: Gene sequencing (and checking) benchmark
that reconstructs a gene sequence from segments of a
larger gene.

3. Intruder: Signature based network intrusion detection
benchmark, processing network packets in parallel, and
matching them against intrusion signatures.

4. kmeans: K-means is a partition based clustering algo-
rithm producing ’hard’ clusters.

5. Labyrinth: This benchmark finds shortest-paths be-
tween pairs of points in a given maze using Lee’s al-
gorithm.

6. SSCA2: A benchmark consisting of four graph kernels
that operate on a large, directed, weighted multi-graph.

7. Vacation: The Vacation benchmark implements a travel
reservation system consisting of several clients that issue
requests and a server that processes the requests.

8. YADA: The YADA benchmark implements Delaunay
mesh refinement using Ruppert’s algorithm.

All benchmarks were measured on two Intel 4-core Xeon
E5520 CPUs resulting in a total of 8 cores with 2.27GHz
and 12GB main memory. The system uses Ubuntu version
9.04 Jaunty Jackalope for 64bit systems, glibc version 2.9.1,
and gcc version 4.3.3-5. Average speedups are calculated
by comparing overall execution time for all programs for
different configurations. adaptSTM supports both 32bit and
64bit mode. The measurements presented here use the 64bit
version.

The evaluation covers results for 1, 2, 4, 8, and 16 con-
current threads. For 16 concurrent threads two threads share
one core, and the scheduler decides on the interleaving of
the threads. This can lead to additional contention. The 16
thread case shows the non-optimal case where a transac-
tional thread does not have exclusive access to a core but
shares it with another concurrent thread.

The next sections represent an analysis of different STAMP
characteristics, an evaluation of non-adaptive optimizations
like the read-set extension, implications of adaptive param-

6 2010/1/22



eters, and competitive performance compared to tinySTM
and TL2.

5.1 STAMP characteristics
The STAMP benchmarks cover a wide range of programs.
From few to many transactions, from a low number of reads
to a high number of reads, and from a low number of writes
to a high number of writes. All these parameters are com-
bined in different programs, and some of them even go
through different phases. We assume that the STAMP suite
captures reasonable performance characteristics of transac-
tional programs and we are aware of the limitations of using
a finite benchmark suite for our measurements.

Bench. #c #l #r #w
Bayesa 33 1 11 1/26 1 1/2

1513 2 23 1/423 2 0/20
Genome 2489218 0 36 1/4154 0 0/24
Intruder 23428126 1 23 3/875 1 0/47
kmeansb 87382 24 24 1/33 24 1/33
Labyrinth 1026 177 180 3/844 177 0/844
SSCA2 22362279 1 1 1/1 1 1/2
Vacation 4194304 7 394 14/1807 7 0/79
YADA 2415298 13 58 0/1320 16 0/331

a Bayes executes two different sequential STM runs.
b kmeans has 720 equal sequential runs.

Table 1. STAMP characteristics showing commits (#c),
locks (#l), avg., min/max reads (#r), and avg., min/max
writes (#w).

As can be seen in Table 1 the STAMP benchmarks are
challenging for an STM system, the total number of trans-
actions ranges from a low number of about 1546 for the
Bayes benchmark to up to 23428126 for the intruder bench-
mark in the average case. Therefore the STM library must
have a low initialization cost as well as a low constant over-
head for additional transactions to keep the overall runtime
spent in the STM system low. The average transactional foot-
print varies as well as the number of transactions. There
are benchmarks with a high number of transactional reads
and writes (Vacation, Labyrinth, and YADA) and there are
benchmarks with a low number of transactional reads, and
writes (SSCA2, kmeans, and Bayes). Another challenge of
the STAMP benchmarks is the great variance of the transac-
tional load for some benchmarks. For genome the number of
read locations can vary between one and 4154, with an aver-
age of only 36 read locations. For the Vacation, YADA, and
Labyrinth benchmarks the transactional load varies greatly
in the number of read and write locations. The varying load
poses challenges to the adaptive system, it must adapt to
changing situations fast, and cover phases as well. If the
adaptive system is not able to adapt fast enough, the con-
figuration is not optimal.

5.2 Evaluation of the read-set extension
Another factor that is important for competitive performance
is the read-set extension. Contention and read version fail-
ures rise with the number of concurrently running transac-
tions. As contention increases other threads will increase
versions for locks, conflicting with the current transaction.
It is important to reduce the amount of unnecessary retries.
Instead of aborting, adaptSTM tries to extend the read-set
by validating all previous reads. Re-validation of the read-
set, whenever a read version fails is beneficial for the overall
performance and reduces the amount of retries.

Bench. 2 threads 4 threads 8 threads 16 threads
Bayes 17 23 27 27

47% 57% 41% 52%
Genome 1346 3350 8945 10611

17% 53% 52% 38%
Intruder 536451 1436177 8527748 6656061

96% 84% 75% 80%
kmeans 175525 569984 1682853 1535232

100% 100% 100% 100%
Labyrinth 19 46 110 237

100% 100% 100% 100%
SSCA2 33 106 57 149

100% 100% 100% 100%
Vacation 1997 4685 8962 6923

92% 90% 89% 82%
YADA 138791 280942 417134 408544

95% 94% 91% 79%

Table 2. Number of read-set validations per benchmark for
a specific number of threads and percentage of successful
validations and read-set extensions.

Table 2 shows that most benchmarks exhibit a high suc-
cess rate for read-set validation and extension. This opti-
mization reduces contention between threads and increases
the commit rate. The benchmarks show that re-validation
and read-set extension is successful in the majority of the
cases.

5.3 Commit and retry rates
An important performance parameter to measure contention
is the retry rate as a function of the number of successful
commits. The contention will increase with an increasing
number of threads which results in more retries.

As can be seen in Table 3, this assumption holds for
the Intruder, kmeans, Labyrinth, and YADA benchmarks.
Genome, and Vacation exhibit the same behavior, but the
number of retries is very low. However the Bayes, and
SSCA2 benchmarks do not follow this pattern. The number
of retries is almost constant. An analysis using Valgrind [21]
and the callgrind tool showed for the Bayes benchmark that
malloc and free together use more than 40% of the time,
the Intruder benchmark uses more than 20% of the time for
the strstr glibc function, and the Genome benchmark spends
more than 37% of the time in the strcmp glibc function.
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Bench. 2 threads 4 threads 8 threads 16 threads
Bayes 1476 1392 1415 1323

1% 1% 1% 2%
Genome 2489218 2489220 2489220 2489228

0% 0% 0% 2%
Intruder 23428127 23428129 23428133 23428141

1% 5% 24% 18%
kmeans 3844852 3844940 3932505 3932865

1% 3% 10% 9%
Labyrinth 19 1032 1040 1056

2% 4% 10% 20%
SSCA2 22362283 22362287 22362295 22362315

0% 0% 0% 0%
Vacation 4194304 4194304 4194304 4194304

0% 0% 0% 0%
YADA 2495029 2544550 2581206 2574275

8% 12% 21% 383%

Table 3. Number of commits per benchmark for a specific
number of threads and percentage of retries.

An external limitation is the memory allocation system.
The glibc memory allocator uses locks to ensure mutual ex-
clusions. As the number of threads increases the calls to the
memory allocator can lead to an unwanted synchronization
and linearization. This limitation can be removed if a lock-
free allocator or an STM-aware memory allocator is used.

5.4 Design decisions for the global hashtable
Two parameters can be changed for the global hashtable:
(i) the size of the hashtable, and (ii) the hash function. It
is important that these parameters are selected carefully as
they are crucial for good performance.

The most important factor for the size of the hashtable is
that the table must be large enough to support enough locks
for all concurrent transactions. But one must keep in mind
that the size of the hashtable is partly responsible for the
static initialization overhead because it must be initialized
with zero.

The hash function represents an important tradeoff be-
tween data locality and over-locking. If shifting hash func-
tions of the form (addr<<X) & HASH SIZE are used then
2X bytes are mapped to a single lock. Depending on the data
access pattern of an individual transaction and the interaction
of the access patterns of concurrent transactions either too
many locks are used if concurrency is low and data locality
is high, or there is contention with concurrent transactions.
Table 4 shows the different options.

The expected result for different configurations of the
hashtable size and the numbers of shift bits is that the perfor-
mance will vary greatly depending on the data locality and
data parallelism of individual benchmarks.

In our experiments we used adaptSTM in the default
configuration with a fixed number of shifts for the global
hash function and a fixed number of entries for the hashtable.
We then used STAMP to evaluate different combinations

# Shift bits Data locality Result
low low Good mapping between lock

distribution and locality
low high Missed potential for lock

optimization
high low Possible contention for

concurrent threads
high high Good mapping between lock

distribution and locality

Table 4. Different configurations for hash functions

of number of shift bits and hashtable sizes to reason about
the variance in these parameters. Tables 7 through 14 in
Appendix A show all combinations of hashtable sizes and
number of shifts for 4 threads and all STAMP benchmarks.
The figures show averages of 5 runs, standard deviation was
low for most runs, except some corner cases with a large
number of shifts. The figures compare hashtable sizes of 216,
218, 220, 222, 224 , and 226 entries, and number of shifts for
0, 2, 4, 6, 8, and 10 shift bits.

Except for the Genome benchmark, the size of the hashtable
has no influence on the runtime of the benchmark. Only for
unrealistically small tables and a small number of shifts (0,
or 2) the hashtable size has a noticeable effect because of
the larger amount of locks a transaction must hold. Larger
hashtables lead to better performance in the Genome bench-
mark with diminishing returns after 220 entries. The re-
sults in Tables 7 through 14 in Appendix A show that any
hashtable size of 220 to 224 entries is reasonable, and there
is no need to adapt the size of the hashtable at runtime.

The number of shift bits in the hash function represents
the tradeoff between data locality and overlocking. A higher
amount of shift bits increases the stride of continuous mem-
ory that a single lock covers. If the transaction already holds
the lock to a part of the data structure then no other con-
current transaction can interfere with other parts of the data
structure covered by the same lock, potentially reducing the
number of retries due to conflicts on the same data struc-
ture. On the other hand, if the number of shift bits is too
large then a single lock covers more data than the trans-
action uses and hinders concurrent transactions to access
nearby data. Tables 11 and 13 in Appendix A show that
some benchmarks like Labyrinth and SSCA2 are immune
to changes of the number of shift bits. Benchmarks like Va-
cation, Genome, Intruder, and YADA have data locality and
profit from a minimum number of 2 shift bits. Other Bench-
marks like Genome, kmeans, Intruder, and YADA have con-
current transactions that work on nearby data structures. As
soon as the number of shift bits is larger than 8 bits, over-
locking takes place and reduces the amount of parallelism
that can be achieved, resulting in decreased performance.
The results in Tables 7 through 14 in Appendix A show that
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all benchmarks perform well with a number of shift bits from
2 to 8.

Table 8 shows detailed statistics for the Genome bench-
mark. The runtime performance is consistent throughout the
different configurations for hashtable sizes and number of
bits for the hash function. Standard deviation is low for all
results. If both the number of shifts for the hashtable and
the hashtable size are reasonable then the variation between
different configurations is low.

Reasonable choices of the hashtable size and a reasonable
number of shift bits result in low changes of the program be-
havior and runtime differences are not dominant. Therefore
adaptSTM uses a fixed hashtable size of 222 entries and a
fixed number of 5 hash bits.

5.5 Implications of adaptive parameters
Depending on the workload of the program each adaptive
parameter helps to get optimal throughput. This section ana-
lyzes the different adaptive parameters and their contribution
to the overall result.

The adaptation process and online optimization is stable,
leading to a low runtime standard deviation. Table 5 shows
the following adaptSTM configurations using the average of
5 runs (standard deviation is low for all benchmarks):

naWB: Baseline configuration with write-back methodol-
ogy and without adaptation.

aWBT: Configuration with activated adaptation, offering
dynamic configuration of the write strategy (write-back
or write-through), and an exponential drop-off in the
waiting time for contented transactions.

aWWH: Adds automatic configuration of the size of the
write hash array for fast lookup of write entries to aWBT.

aWHH: Extends aWWH with different hash lookup func-
tions to tune locality in the write hash array.

aALL: Uses all adaptive parameters. The aWHH configu-
ration is extended by a selective Bloom filter to speedup
the lookup of write entries.

The benchmarks in Table 5 and Figure 3 show that fine-
grained thread-local adaptive tuning is able to increase per-
formance of a competitive STM library by 4.33% on average
for 16 concurrent threads, 3.39% for 8, and 3.77% 4 concur-
rent threads over the non-adaptive configuration. Individual
benchmarks are able to increase performance by 10% over
the hand-optimized non-adaptive baseline.

The adaptive configuration starts with the best mean con-
figuration for the STAMP benchmarks and tries to improve
from there. The fine-grained adaptation system checks and
adapts the parameters every 64 times a thread starts a new
transaction, or retries a conflicting transaction.

More threads lead to higher contention, which degrades
performance for statically tuned STM libraries. An adaptive

Bench. Config. 1 thr. 2 thr. 4 thr. 8 thr. 16 thr.
Bayes naWB 27.18 26.27 20.71 20.84 20.71

aWBT 27.28 26.70 21.10 21.47 20.34
aWWH 27.18 26.46 20.70 20.90 20.64
aWHH 27.07 26.66 20.71 20.58 20.62
aALL 27.06 26.68 20.59 20.76 20.39

Genome naWB 12.53 6.25 3.17 1.91 2.35
aWBT 12.21 6.31 3.14 1.86 2.24
aWWH 12.41 6.34 3.14 1.87 2.31
aWHH 12.24 6.35 3.08 1.85 2.34
aALL 12.16 6.23 3.02 1.83 2.24

Intru. naWB 42.41 24.63 14.06 11.18 11.15
aWBT 38.37 23.09 13.03 10.30 10.41
aWWH 37.56 23.16 13.19 10.64 10.31
aWHH 38.20 23.03 13.09 10.35 10.45
aALL 38.35 23.13 13.06 10.35 10.40

kmeans naWB 112.71 83.65 52.41 36.07 35.49
aWBT 125.25 89.18 56.88 36.88 36.77
aWWH 126.88 88.75 58.27 39.08 36.95
aWHH 127.11 85.04 56.22 38.35 37.37
aALL 123.70 89.64 50.63 34.74 31.95

Labyr. naWB 82.91 43.30 23.66 13.67 16.59
aWBT 83.20 43.14 24.15 13.57 16.62
aWWH 83.16 43.57 23.36 13.48 16.52
aWHH 83.22 43.18 23.20 14.10 16.44
aALL 83.56 43.13 23.52 13.54 16.42

SSCA2 naWB 26.11 21.90 15.90 19.36 19.57
aWBT 26.52 22.14 15.68 19.17 19.39
aWWH 26.61 22.24 15.79 19.18 19.15
aWHH 26.47 21.98 15.74 19.36 19.32
aALL 26.00 22.08 15.29 19.30 19.46

Vacat. naWB 43.70 25.42 13.13 7.04 11.75
aWBT 43.91 24.77 12.82 6.94 11.45
aWWH 43.21 24.77 12.78 6.83 11.63
aWHH 44.25 24.44 12.62 6.73 11.35
aALL 42.57 24.55 12.70 6.76 11.39

YADA naWB 16.18 13.09 8.96 8.57 11.30
aWBT 15.61 12.84 8.63 8.69 10.46
aWWH 15.36 12.79 8.65 8.51 10.27
aWHH 15.70 12.89 8.78 8.55 10.18
aALL 16.00 12.92 8.84 8.53 10.27

Table 5. Effect of different STM parameters, with and with-
out adaptation, runtime in seconds.

mechanism is able to adapt runtime parameters to a changing
workload, reacting as soon as contention rises.

The adaptive system adds some overhead to the total
processing time. So it is not surprising that the runtime for
a single thread can be higher than for a system without
adaptation. But as soon as the environment gets less stable
(e.g., if the number of thread increases or there is some
background activity), the adaptive system is able to increase
performance by tuning the correct parameters.

A potential limitation of the STAMP benchmarks is that
all transactions except the Labyrinth benchmark have a low
average number of written locations below 30, for most
benchmarks the maximum number of written locations is
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Figure 3. Effects of different STM parameters showing different adaptive configurations, runtime is relative to the non-
adaptive case (lower is faster).

below 50 locations. For the STAMP benchmarks the trans-
actional read and write accesses were instrumented manu-
ally. A compiler might emit a higher amount of transactional
reads and writes due to limited context information. With
the adaptation of the hash-table for write entries adaptSTM
is able to handle a much higher number of locations that fu-
ture workloads can use.

5.6 Comparison with other STM libraries
This section compares the performance of adaptSTM against
the two fast STM systems TL2 [6], and tinySTM [10]. The
comparison shows numbers for TL2 version 0.9.6, tinySTM
0.7.3, and tinySTM 0.9.9. Two versions of tinySTM were
used, because the newer version is not faster than tinySTM
0.7.3 in all benchmarks.

Table 6 and Figure 4 show the competitive performance
of the adaptSTM system using the average of 5 runs. Stan-
dard deviation is low for all benchmarks.

TL2 exited with assertion failures for some contented
runs with 8 and 16 threads of the YADA benchmark, and
exited with segmentation faults for all configurations of the
Bayes benchmark.

If contention is high, as can be seen in Table 3 and
Table 6 for the Intruder, YADA, and Vacation benchmarks
then adaptSTM outperforms the other STM libraries. The
adaptive system switches from a write-through to a write-
back strategy, and the contention manager increases the time
a transaction spins for a taken lock before it aborts.

As can be seen in Table 6 the adaptive system outper-
forms TL2 for all benchmarks except SSCA2. This sug-
gests that the default write-through approach combined with
eager-locking is faster than the lazy-locking write-back ap-

proach of TL2. Comparing adaptSTM to TL2 results in an
average speedup of 43% for 8 threads and 137% for 16
threads.

adaptSTM is able to show better performance for both
versions of tinySTM for most of the benchmarks. Espe-
cially in highly contented environments adaptSTM is able
to adapt to the given situation. adaptSTM is able to outper-
form tinySTM 0.9.9 by 390% on average for 16 threads, or
if we exclude the yada benchmark by 123% for 16 threads.

An interesting figure is the runtime for 16 threads. These
numbers show the case with higher contention through con-
current programs. adaptSTM is able to cope with the ad-
ditional contention and is still able to deliver good perfor-
mance. The Intruder, kmeans, Vacation, and YADA bench-
marks show how adaptSTM is able to handle higher con-
tention compared to TL2 and tinySTM.

In a heavily contented environment other factors can in-
fluence the result of STM benchmarks. We attribute the per-
formance edge of adaptSTM in contented situations to a
large extend to the design decision to use an (adaptive) back-
off strategy instead of retrying immediatly.

6. Concluding remarks
STM libraries must offer good performance for long-running
and short-running transactions with varying transactional
workloads, keeping initialization costs as well as constant
overhead low. An STM system that adapts important param-
eters like write-methodology, size of local hash-tables, and
hash functions according to runtime statistics is able to re-
act to phase changes in the program and to speed up overall
execution.
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Figure 4. Comparison of adaptSTM (astm) with TL2, tinySTM version 0.7.3 (tstm), and tinySTM version 0.9.9 (tstm099).
Runtime relative to adaptSTM baseline (lower is faster).

This paper presents a fine-grained, thread-local adaptive,
lock-, and word-based STM library called adaptSTM that
delivers good performance for varying workloads and trans-
action lengths. To our knowledge adaptSTM is the first STM
library that uses thread-local adaptiveness to adapt to the be-
havior of the running program.

Thread-local adaptation has several advantages over
global adaptation: (i) there is no need for inter-thread syn-
chronization and barriers, (ii) threads with different work-
loads will adapt to their specific workloads and not to a
global average, and (iii) local adaptiveness has less over-
head and can therefore happen more frequently, resulting in
a faster adaptation to phase changes.

For the benchmark programs, adaptSTM performs better
than TL2 in all cases except SSCA2, and slightly better or
slightly worse than tinySTM for low-contention scenarios;
for high contention scenarios, adaptSTM performs signifi-
cantly better. adaptSTM’s thread-local adaptation is able to
improve performance by an average of 4.33% for 16 threads,
and 3.39% for 8, and 3.77% for 8 threads over the hand-
optimized non-adaptive case, and up to 10% for individual

benchmarks. Compared to TL2 an average improvement of
43% for 8 threads and 137% for 16 threads is achieved.

Transactional Memory is an attractive platform for par-
allel programs, and Software Transactional Memory has at-
tracted considerable attention. This paper demonstrates that
an STM system provides numerous opportunities for opti-
mizations and that adaptivity is an important feature of a
high-performance TM system. The designers of hardware
support for TM are well-advised to pay attention to lessons
learned by STM users and implementors.
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A. Tables and figures

1 Thread 216 218 220 222 224 226

0 32.49 32.1 32.07 32.89 32 32.22
2 31.98 32.01 32.09 32.12 31.99 32.03
4 31.97 32.04 32.04 32.24 32.2 32.19
6 32.13 32.04 32.15 32.05 32.04 32.2
8 32.06 32.21 32.03 32.03 32.03 32.03

10 32.13 32.22 32.32 32.11 32.01 32.12

2 Threads 216 218 220 222 224 226

0 24.07 25.26 24.2 24.3 24.4 25.13
2 24.92 24.37 24.59 23.24 24.48 24.2
4 24.96 24.23 25.12 25.51 23.75 25.06
6 26.08 24.19 24.8 24.45 24.95 25.08
8 26.4 27 26.44 25.22 24.02 25.7

10 27.29 27.31 25.71 26.55 28.68 26.98

4 Threads 216 218 220 222 224 226

0 23.25 22.02 22.81 22.44 22.01 21.68
2 21.15 22.98 22.56 21.86 22.05 22.85
4 23.08 21.39 23.2 22.99 22.63 22.02
6 22.43 21.92 23.51 22.23 22.11 22.51
8 23.65 23.66 24.17 23.82 23.85 23.26

10 24.08 23.29 24.99 24.09 23.37 25.22

8 Threads 216 218 220 222 224 226

0 23.07 23.23 22.74 23.24 22.83 23.46
2 23.17 25.22 21.77 23.61 22.75 21.85
4 23.52 24.76 23.4 22.57 24.29 22.16
6 25.34 24.11 23.29 24.21 26.2 23.49
8 26.41 24.1 25.23 23.66 25.91 25.9

10 26.48 26.16 26.7 25.29 25.57 25.69

16 Threads 216 218 220 222 224 226

0 22.1 23.38 24.45 24.09 25.53 24.05
2 22.41 21.39 22.57 23.91 22.84 23.18
4 22.81 23.36 25.94 21.88 24.02 23.17
6 24.05 24.2 24.96 23.57 23.6 22.26
8 24.75 23.68 22.97 25.93 25.55 23.46

10 24.99 24.87 26.18 23.56 24.11 25.27

Table 7. Detailed statistics for the Bayes benchmark show-
ing different global hashtable parameters. The hashtable size
varies from 216 to 226, and the number of hash bits varies
from 0 to 10. The benchmarks were run for 1 to 16 threads.

1 Thread 216 218 220 222 224 226

0 11.5 11.71 11.81 12.18 12.28 12.26
2 11.54 11.78 11.76 12.02 12.06 11.98
4 11.5 11.7 11.61 11.72 11.67 11.79
6 11.58 11.63 11.61 11.75 11.69 11.72
8 11.64 11.6 11.68 11.63 11.7 11.61

10 11.51 11.48 11.53 11.42 11.5 11.48

2 Threads 216 218 220 222 224 226

0 6.55 6.92 7 7.11 7.17 7.17
2 6.67 6.65 6.8 6.72 6.69 6.76
4 6.23 6.24 6.51 6.36 6.6 6.54
6 6.65 6.31 6.33 6.27 6.47 6.44
8 6.28 6.11 6.28 6.35 6.35 6.46

10 6.39 6.47 6.31 6.51 6.47 6.37

4 Threads 216 218 220 222 224 226

0 3.85 3.78 3.77 3.65 3.6 3.5
2 3.67 3.48 3.42 3.28 3.28 3.2
4 3.44 3.22 3.11 3.06 3.06 3.1
6 3.34 3.19 3.19 3.07 3.01 2.98
8 3.41 3.24 3.15 3.11 3.06 3.06

10 3.48 3.4 3.44 3.42 3.45 3.46

8 Threads 216 218 220 222 224 226

0 2.73 2.72 2.54 2.28 2.08 2.04
2 2.46 2.22 2.12 1.99 1.93 1.9
4 2.12 2.02 1.87 1.85 1.81 1.85
6 2.09 1.99 1.93 1.8 1.78 1.8
8 2.22 2.11 1.98 1.99 2.06 1.93

10 2.24 2.14 2.12 2.26 2.23 2.2

16 Threads 216 218 220 222 224 226

0 2.9 2.78 2.81 2.79 2.62 2.69
2 2.8 2.74 2.57 2.56 2.51 2.46
4 2.46 2.5 2.48 2.26 2.38 2.53
6 2.49 2.42 2.39 2.22 2.2 2.2
8 2.56 2.63 2.46 2.43 2.39 2.35

10 2.84 2.71 2.57 2.63 2.61 2.52

Table 8. Detailed statistics for the Genome bench-
mark showing different global hashtable parameters. The
hashtable size varies from 216 to 226, and the number of hash
bits varies from 0 to 10. The benchmarks were run for 1 to
16 threads.
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1 Thread 216 218 220 222 224 226

0 36.86 38.05 41.55 43.74 44.69 46.35
2 36.32 37.44 39.53 40.71 41.77 42.67
4 36.05 36.84 38.34 39.67 40.2 40.33
6 35.97 36.63 38.73 38.7 38.95 38.97
8 35.63 36.58 37.93 37.59 37.7 37.67

10 35.86 36.63 36.91 37.03 36.92 36.91

2 Threads 216 218 220 222 224 226

0 27.61 27.02 28.25 28.95 29.35 30.28
2 25.21 25.35 26.19 26.42 27.05 27.46
4 24.16 24.5 25 25.54 25.71 25.87
6 23.85 24.19 24.89 25 25.02 25.05
8 23.54 24.07 24.24 24.28 24.28 24.26

10 23.62 23.89 23.92 23.93 23.93 23.96

4 Threads 216 218 220 222 224 226

0 25.16 16.41 14.94 15.07 15.31 15.89
2 15.19 13.64 13.7 13.75 14.03 14.24
4 12.79 12.95 12.98 13.22 13.32 13.39
6 12.47 12.55 12.95 12.94 13.01 13.17
8 12.28 12.48 12.57 12.56 12.56 12.61

10 12.32 12.37 12.41 12.4 12.4 12.51

8 Threads 216 218 220 222 224 226

0 33.51 23.78 8.32 8.22 8.32 8.53
2 50.75 7.49 7.32 7.48 7.54 7.58
4 8.03 6.87 6.94 7.11 7.05 7.16
6 6.85 6.75 7.05 6.92 6.96 7.02
8 6.65 6.66 6.75 6.8 6.8 6.67

10 6.63 6.62 6.75 6.62 6.74 6.64

16 Threads 216 218 220 222 224 226

0 168.37 29.66 12.97 13.63 13.48 12.99
2 32.65 12.32 13.16 12.54 12.02 11.8
4 11.26 11.99 12.47 11.75 11.28 11.45
6 10.98 12.23 11.98 11.32 11.27 11.28
8 11.43 12.09 11.44 11.29 11.15 11.26

10 11.69 11.83 11.67 11.61 11.64 11.64

Table 9. Detailed statistics for the Vacation bench-
mark showing different global hashtable parameters. The
hashtable size varies from 216 to 226, and the number of hash
bits varies from 0 to 10. The benchmarks were run for 1 to
16 threads.

1 Thread 216 218 220 222 224 226

0 130.38 129.88 129.27 130.51 131.72 130.06
2 132.19 130.01 130.69 128.57 130.91 130.86
4 122.35 122.06 123.29 121.79 121.28 121.52
6 116.62 117.14 117.65 116.51 117.37 117.2
8 115.54 114.69 114.88 115.44 115.02 114.78

10 114.62 116.94 118.1 118.13 117.27 117.37

2 Threads 216 218 220 222 224 226

0 95.33 103.34 94.84 95.21 93.61 103.56
2 91.99 100.83 102.05 94.41 95.09 95.4
4 90.8 98.88 93.53 88.56 88.74 89.43
6 88.79 91.81 96.21 97.53 97.03 89.41
8 91.99 93.97 95.86 92.25 93.37 94.76

10 99.13 92.31 97.85 100.35 94.21 97.07

4 Threads 216 218 220 222 224 226

0 51.6 53.92 52.06 57.31 55.29 52.65
2 53.93 54.55 54.65 50.66 55.6 53.99
4 49.68 53.84 53.89 53.11 52 53.82
6 51.89 53.02 56.91 54.9 53.79 56.41
8 53.99 62.01 61.57 56.23 54.68 58.92

10 71.31 74.92 64.95 66.55 68.95 66.89

8 Threads 216 218 220 222 224 226

0 32.45 33.84 33.4 31.55 33.26 35.91
2 34.08 32.05 32.07 33.37 33.24 35.18
4 35.11 34.69 33.85 34.01 33.18 35.83
6 35.15 35.4 35.03 36.33 34.94 35.79
8 41.82 44.03 43.23 44.21 46 43.83

10 68.2 68.31 67.4 68.46 68.42 68.29

16 Threads 216 218 220 222 224 226

0 30.52 30.91 31.86 31.29 30.54 32.42
2 33.29 29.66 31.29 31.37 29.42 31.22
4 30.99 31.39 33.46 31.74 32.31 33.12
6 43.15 45.3 47.1 41.91 41.52 43.62
8 536.68 508.28 520.35 500.45 541.7 462.83

10 216.68 265.15 299.07 279.37 258.94 317.82

Table 10. Detailed statistics for the kmeans bench-
mark showing different global hashtable parameters. The
hashtable size varies from 216 to 226, and the number of hash
bits varies from 0 to 10. The benchmarks were run for 1 to
16 threads.
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1 Thread 216 218 220 222 224 226

0 81.31 81.32 81.3 81.38 81.29 81.31
2 82.12 81.34 81.35 81.31 81.3 81.34
4 81.32 81.33 81.32 81.33 81.31 81.3
6 81.35 81.35 81.34 81.35 81.31 81.3
8 81.59 81.34 81.34 81.33 81.3 81.3

10 81.36 81.35 81.33 81.31 81.3 81.32

2 Threads 216 218 220 222 224 226

0 42.85 42.71 42.92 42.39 42.47 42.44
2 42.93 42.57 42.32 42.38 42.45 42.38
4 42.93 42.66 42.64 42.37 42.33 42.38
6 43.01 42.54 42.3 42.31 42.33 42.41
8 42.56 42.42 42.32 42.27 42.36 42.35

10 42.73 42.38 42.49 42.48 42.44 42.36

4 Threads 216 218 220 222 224 226

0 23.29 23.38 23.05 22.82 22.97 23.07
2 23.19 23.08 22.92 23.14 22.92 23.12
4 23.38 23.18 23.15 22.7 22.99 23.14
6 23.08 23 23.07 23.14 22.88 23.11
8 23.23 23.15 22.85 23.02 22.92 23.13

10 23.25 23.42 23.27 23.14 23.21 23.19

8 Threads 216 218 220 222 224 226

0 13.36 13.79 13.95 13.51 14.29 13.41
2 13.36 13.65 13.33 13.26 13.24 13.62
4 14.07 14.2 13.44 13.51 13.37 13.48
6 13.8 13.52 14.07 13.56 13.54 13.94
8 14.2 13.6 13.31 13.78 13.77 13.87

10 13.44 13.91 13.32 13.51 13.47 13.51

16 Threads 216 218 220 222 224 226

0 16.39 16.57 16.23 16.23 16.28 16.3
2 16.45 16.33 15.97 16.23 16.52 16.28
4 16.75 16.37 16.87 16.4 16.75 16.02
6 16.27 16.15 15.87 16.44 16.53 16.37
8 16.21 16.44 16.32 16.53 16.1 16.55

10 16.29 16.28 16.56 16.46 16.21 16.25

Table 11. Detailed statistics for the Labyrinth bench-
mark showing different global hashtable parameters. The
hashtable size varies from 216 to 226, and the number of hash
bits varies from 0 to 10. The benchmarks were run for 1 to
16 threads.

1 Thread 216 218 220 222 224 226

0 33.03 33.27 34.96 36.57 36.64 37.42
2 32.92 33.24 34.12 34.9 34.97 35.43
4 32.83 33.19 33.72 34.15 34.48 34.29
6 32.55 33.1 33.32 33.9 33.66 33.77
8 32.53 32.92 33.12 33.1 33.31 33.16

10 32.68 32.87 32.81 32.88 32.82 32.91

2 Threads 216 218 220 222 224 226

0 24.01 24.09 24.06 24 23.88 24.59
2 23.31 23.53 23.37 23.17 22.94 23.05
4 23.06 23.26 22.79 22.66 22.55 22.9
6 23.17 23.24 23.1 23.02 22.98 23
8 23.2 23.28 23.22 23.22 23.18 23.22

10 23.24 23.37 23.4 23.35 23.39 23.3

4 Threads 216 218 220 222 224 226

0 15.04 14.26 14.15 14.03 14.04 14.13
2 13.61 13.56 13.48 13.19 13.03 13.37
4 13.32 13.41 13.26 13.14 13.17 13.09
6 13.26 13.4 13.27 13.22 13.19 13.25
8 13.54 13.23 13.6 13.56 13.3 13.57

10 18.52 18.58 18.6 18.83 18.64 18.62

8 Threads 216 218 220 222 224 226

0 12 11.65 11.42 11.17 11.09 11.17
2 11 10.81 10.69 10.51 10.34 10.46
4 10.51 10.38 10.38 10.17 10.2 10.22
6 10.3 10.22 9.99 10.09 10.08 10.02
8 11.07 10.79 10.69 10.73 10.89 10.73

10 17.06 17.23 16.95 17.17 17.09 16.81

16 Threads 216 218 220 222 224 226

0 23.47 16.13 11.78 11.08 11.02 10.93
2 14.07 11.27 10.64 10.44 10.56 10.21
4 13.77 11.23 10.76 10.57 10.07 9.98
6 11.49 10.63 10.45 10.25 10.1 10.01
8 12.31 12.37 12.04 11.81 11.95 11.75

10 13.71 13.1 12.59 12.46 12.64 12.71

Table 12. Detailed statistics for the Intruder bench-
mark showing different global hashtable parameters. The
hashtable size varies from 216 to 226, and the number of hash
bits varies from 0 to 10. The benchmarks were run for 1 to
16 threads.
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1 Thread 216 218 220 222 224 226

0 22.76 23.06 23.8 24.36 24.63 24.98
2 22.74 23.15 23.63 24.02 24.27 24.45
4 22.87 23.26 23.64 24.07 24.14 24.31
6 22.93 23.31 23.51 23.85 23.9 23.89
8 22.91 23.18 23.43 23.57 23.58 23.61

10 22.92 22.99 23.2 23.06 23.27 23.21

2 Threads 216 218 220 222 224 226

0 21.5 21.42 21.48 21.62 21.93 22.28
2 21.45 21.45 21.6 21.75 21.75 22.16
4 21.43 21.49 21.45 21.58 21.74 21.98
6 21.45 21.44 21.62 21.48 21.61 21.54
8 21.44 21.66 21.36 21.39 21.39 21.4

10 21.56 21.27 21.23 21.21 21.33 21.16

4 Threads 216 218 220 222 224 226

0 14.86 15.01 14.84 14.87 14.97 15.25
2 14.9 14.88 14.8 14.82 14.95 15.14
4 14.84 14.49 14.85 14.98 14.95 15.03
6 14.88 14.84 14.86 14.88 14.9 14.65
8 14.88 14.84 14.89 14.81 14.97 14.88

10 14.82 14.8 14.83 14.76 14.79 14.82

8 Threads 216 218 220 222 224 226

0 19.11 18.82 18.82 18.77 18.87 18.91
2 18.96 18.9 18.94 18.87 18.99 19.05
4 19.1 19.14 18.91 18.99 18.96 18.91
6 19.21 19.07 19.01 19.06 19.17 19.18
8 19.12 18.95 19.05 19.08 18.97 19.11

10 19.22 19.16 19.13 19.13 19.03 19.07

16 Threads 216 218 220 222 224 226

0 19.98 18.97 18.4 18.54 18.83 18.94
2 18.9 18.34 18.59 18.79 19.06 19.03
4 18.71 18.55 18.9 19.08 19.06 19.03
6 18.68 18.71 18.85 18.9 18.97 18.93
8 18.53 18.51 18.48 18.58 18.43 18.42

10 19.37 19 18.93 18.98 18.89 19.07

Table 13. Detailed statistics for the SSCA2 bench-
mark showing different global hashtable parameters. The
hashtable size varies from 216 to 226, and the number of hash
bits varies from 0 to 10. The benchmarks were run for 1 to
16 threads.

1 Thread 216 218 220 222 224 226

0 14.93 15.11 15.79 16.18 16.3 16.38
2 14.83 15.11 15.34 15.44 15.52 15.6
4 14.69 14.79 15.03 15.07 15.18 15.2
6 14.67 14.83 14.87 14.89 14.91 15.02
8 14.57 14.66 14.72 14.69 14.7 15.03

10 14.52 14.67 14.67 14.63 14.66 14.67

2 Threads 216 218 220 222 224 226

0 17.5 14.69 13.74 13.53 13.55 13.5
2 14.18 13.36 13.02 12.98 12.98 12.96
4 13.17 12.79 12.69 12.68 12.67 12.74
6 13.66 13.61 13.5 13.5 13.54 15.59
8 14 14.14 14.53 13.77 13.89 14.02

10 14.88 16.57 14.67 14.95 16.1 15.85

4 Threads 216 218 220 222 224 226

0 19.61 11.21 9.63 9.18 8.99 8.99
2 10.97 9.34 8.84 8.45 8.8 8.71
4 9.37 8.81 8.72 8.59 8.53 8.65
6 9.91 9.62 9.51 9.54 9.51 9.35
8 10.02 10 10.21 10.01 9.91 9.94

10 11.03 11.66 17.05 10.83 46.49 11.3

8 Threads 216 218 220 222 224 226

0 23.06 11.64 9.99 8.89 8.47 8.63
2 11.56 9.29 8.44 8.51 8.61 8.28
4 9.96 8.7 8.54 8.55 8.61 8.19
6 10.29 9.35 9.32 9.42 10.23 9.27
8 10.4 10.18 9.79 9.81 9.73 9.53

10 10.75 10.58 20.17 10.66 10.56 10.82

16 Threads 216 218 220 222 224 226

0 N/R 28 15.32 12.23 11.07 10.95
2 27.83 14.64 11.53 11.05 10.69 10.72
4 15.01 11.45 11.15 10.78 10.69 10.39
6 12.3 10.93 10.67 10.57 10.53 10.33
8 13.81 13.08 12.37 12.46 12.34 12.6

10 18.95 18.68 18.41 17.3 19.75 26.67

Table 14. Detailed statistics for the YADA bench-
mark showing different global hashtable parameters. The
hashtable size varies from 216 to 226, and the number of hash
bits varies from 0 to 10. The benchmarks were run for 1 to
16 threads.
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