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Abstract—Fast binary translation is a key component for
many modern software techniques. This paper reflects on the
implementation of fastBT, a generator for low-overhead, table-
based dynamic (just-in-time) binary translators. We discuss the
most challenging sources of overhead, propose optimizations to
further reduce these penalties, and present a detailed perfor-
mance analysis with different approaches to translate indirect
control transfers. To allow comparison with other systems the
paper includes an empirical evaluation of fastBT relative to three
other binary translation systems (DynamoRIO, HDTrans, and
PIN).

The fastBT generator is architecture-neutral but this paper’s
analysis and performance data focus on IA-32 Linux. fastBT
performs well in practice: we report an overhead of 0% to 10%
for the majority of benchmarks. fastBT uses a trace cache and
trampolines to obtain efficiency in translation and execution of
the translated program. The keys to fastBT’s good performance
are a configurable inlining mechanism optimizations for the
different forms of indirect jumps.

To ease development of a binary translator, the translation
actions of fastBT are specified in high-level abstractions that are
compiled into fastBT’s translation tables. This table generator
allows a compact description of the transformations that the
binary translator effects in the translated code.

I. INTRODUCTION

Binary translation (BT) may add, remove, or replace indi-
vidual instructions of the translated program. There are two
approaches to binary translation (BT): (i) static (ahead-of-
time) translation before the execution of the program and
(ii) dynamic (just-in-time) translation at runtime. Both ap-
proaches to BT may result in a slow-down of the translated
program (relative to the original program), since the added
or translated instructions might add overhead. The efficiency
of the translated program has therefore received considerable
attention by various researchers, as we discuss in more detail
in Section V. The key advantage of static translation is that
the translation process does not incur a runtime penalty.
The principal disadvantage is that static BT is limited to
code regions that can be identified at compile time. In many
environments this approach is not appropriate: dynamically
loaded libraries pose a problem, and the static translation
cannot cope with self-modifying code. Dynamic BT translates
code as it is executed. Using dynamic BT, the runtime system
is able to adapt to phase changes of a program and to optimize
hot code regions incrementally, and we therefore focus on
dynamic translation. Most dynamic translators include a code
cache to lower the overhead of translation. Translated code is

placed in this cache, and subsequent executions of the same
code region can benefit from the already translated code.

There are two key aspects in the design of a fast binary
translator. First, the translation process must be lean; although
this overhead is paid only once, it still impacts every program.
Second, the overhead introduced through the translation must
also be low; this overhead is paid for every execution of a
given code region.

The biggest overhead for BT is caused by indirect control
transfers since they result in an additional runtime lookup.
Three kinds of indirect control transfers exist:

1) Indirect jumps: The target depends on a memory
location or a register and is not known at translation
time. Therefore the lookup happens at runtime.

2) Indirect calls: Similar to indirect jumps the target is not
known at translation time and can change for subsequent
calls.

3) Function returns: The target is on the stack. The
stack of the user program always contains untranslated
addresses because some programs depend on return
addresses for features, e.g., exception management.

fastBT is a generator for low-overhead, low footprint, table-
based dynamic binary translators that allows us to investigate
the issues in constructing a binary translator that is fast and that
produces fast code. fastBT brings many well-known concepts
of BT together and allows their investigation in a stable
context. BT is important, but a simple combination of existing
techniques is far from trivial. The contribution of this paper is
an investigation of the combination of a number of approaches
to optimize indirect control transfers, the development of novel
strategies to translate indirect control transfers (like the inlined
fast return strategy or the return and indirect call prediction
that use inlined caches of the last targets), and providing a
high-level interface without sacrificing performance.

The current implementation provides tables for the Intel IA-
32 architecture, and uses a per-thread trace cache for translated
blocks. The output of the binary translator is constructed
through user-defined actions that are called in the just-in-time
translator and emit IA-32 instructions. The translation tables
are generated from a high-level description and are linked to
the binary translator at compile time. The user-defined actions
and the high-level construction of the translation tables offer
an adaptability and flexibility that is not reached by any other
translator we know of. E.g., the fastBT approach allows in a
few hundred lines of code the implementation of a library that



dynamically detects and redirects all memory accesses inside
a transaction to a software transactional memory system.

Like HDTrans [22], fastBT leaves the stack of the user
program unchanged. Although we use the stack for fastBT’s
functions, the user program never sees a change of the original
layout and is completely unaware of the translation. Based on
this decision fastBT is able to (i) handle self-modifying code
that changes its own return address, (ii) handle exceptions
without additional overhead, (iii) simplify debugging of the
application. Each one of these points accesses the program
stack to match return addresses with known values. These
comparisons would not work if the stack was changed, because
the return addresses on the stack would point into the trace
cache, instead of into the user program. Therefore fastBT re-
places every return instruction with an indirect control transfer
to return to translated code.

II. DESIGN AND IMPLEMENTATION

To meet the two key requirements of a fast binary translator
(lean translation, low-overhead for translated code) design and
implementation must go together, and these two cannot be
separated.

The translator processes blocks of the original program,
places them in the trace cache and adds entries to the mapping
table. The execution flow of the program stays in the trace
cache. If an untranslated basic block is executed, then it is
translated on the fly, and the new trace is added to the trace
cache. See Figure 1 for an overview.

Fig. 1. Runtime layout of the binary translator.

A. Table generation

The BT library uses a multilevel translator table with
information about each possible machine code instruction.
Writing translation tables by hand is hard and error prone, as
there exist a multitude of different possible instructions and
combinations with prefixes on IA-32, and accounting for the
various encodings and formats of all machine instructions can
be a cumbersome task.

fastBT uses a table generator that offers a high-level inter-
face to all instructions instead, see Figure 2. The programmer
can specify how to handle specific instructions or where to
insert or to remove code. This attractive feature allows a
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Fig. 2. Compile time construction of the translator table.

compact description of changes in the translated code with
a single point of change.

The supplied base tables contain detailed information about
register usage, memory accesses, different instruction types
(e.g., if the FPU is used) and information about individual in-
structions. These base tables define an identity transformation
where only control flow instructions are altered to keep the
execution flow under the control of the translator.

Using adapter functions, the user can specify which types or
instructions are altered when the table is produced. The table
contains an action for each existing machine code instruction.
These actions can be selected during table generation based on
the instruction, the properties of the instruction (e.g., register
access, memory access, control flow, function calls, and so
on). Figure 3 shows an adapter function that redirects all
instructions that might access memory to a special handler.
The output of the table generator is then compiled and linked
together with the fastBT sources to the binary translator
library, which is then used as a shared library in the program.

bool isMemOp (const unsigned char* opcode,
const instr& disInf, std::string& action)

{
bool res;
/* check for memory access in instr. */
res = mayOpAccessMem(disInf.dstFlags);
res |= mayOpAccessMem(disInf.srcFlags);
res |= mayOpAccessMem(disInf.auxFlags);

/* change the default action */
if (res) { action = "handleMemOp"; }

return res;
}

// in main function:
addAnalysFunction(isMemOp);

Fig. 3. Adapter function that redirects all instructions that access memory
to a special action - C++ Code.

B. Basic translator

The layout of the translation engine is a simple table-based
iterator. When the translator is invoked with a pointer to a
basic block, it first allocates a new buffer fragment in the trace
cache. The translator then adds a reference from the original
basic block to the buffer fragment into the mapping table. Next
the basic block gets translated one instruction at a time.



The previously generated tables are used to decode each
instruction. Because IA-32 instructions can differ in length (1
byte to 16 bytes) fastBT uses a multilevel table: If the decoding
of the instruction is not finished in the current table, a pointer
redirects to another table, and the translator reads the next
byte. This process is repeated until the instruction is decoded
completely and only possible arguments are left.

In the next step the instruction and the arguments are
passed to the corresponding action function, which handles the
instruction. The action functions are completely unrestricted in
how they refactor the code. They can add arbitrary code (e.g.,
function calls) and alter the instruction in any conceivable way
or remove the instruction altogether.

Translation stops at recognizable basic block (BB) bound-
aries like branches and return instructions. Some BB bound-
aries are not recognizable; if a branch target points into an
already translated block, a part of this block is translated again.

At the end of a basic block the translator checks if the targets
of outgoing edges are already translated, and adds jumps to
already translated targets. Otherwise the translator builds a
trampoline that translates the target, if it is executed, and adds
a jump to this trampoline.

C. Predefined actions

The translator needs different action functions to support
the identity transformation. The simplest action functions do
nothing, thereby removing the instruction in the instrumenta-
tion, or copy the instruction verbatim to the cache. Additional
action functions are needed to keep the execution flow inside
the cache.

One action function handles direct unconditional jumps and
redirects them to another block in the cache. Other action
functions handle conditional jumps and redirect the execution
flow to the translated targets. Special action functions handle
indirect jumps, indirect calls and return instructions. They
need an indirect control transfer that cannot be determined
at translation time, and these functions add runtime checks to
transfer control to the correct destination.

All action functions that handle direct control transfers
check if the target is already translated. If it is not translated,
they will generate a jump to a trampoline that translates and
executes the target if the trampoline is called.

Simple action functions copy the instructions to the code
buffer, without altering them. Additional actions are needed
to redirect the execution flow so that it stays inside the buffer.
These actions ensure that the program cannot escape the
translation and that no unchecked or untranslated instructions
are executed.

D. Trace cache

During the execution of a program it is likely that certain
code regions are executed multiple times. Hence keeping
translated code in a cache potentially reduces the overhead of
BT since the translated code regions can be reused an arbitrary
number of times without generating additional overhead.

As reported in [4] and [7] code sharing between threads is
low for desktop applications and moderate for server appli-
cations. Therefore fastBT uses a per thread cache-strategy to
increase code locality and to potentially extract better traces.

An additional important advantage of thread local caches
is that the translator can directly emit hard-coded pointers to
thread local data structures into the cache without the need to
call expensive lookup functions to determine thread local data
structures. This feature is used in the translator itself for syscall
and signal handling and to inline and optimize all thread local
accesses from the instrumented program.

The combination of fastBT’s basic translator and the trace
cache leads to a greedy trace extraction. Traces are formed
as a side effect of the first execution and placed in the trace
cache.

E. Trampoline table

Every time when the translator finishes a basic block,
it must emit continuation points. To keep the trace cache
clean from these translation hints the translator generates a
trampoline and emits a jump to the trampoline in the cache
(jmp trampoline_addr). The trampoline contains all the
information needed to start the translation at the continuation
point, the location where the trampoline was called, and
information about the thread.

As soon as the trampoline is used and the location it points
to is translated the translator can backpatch the jump to the
trampoline with a jump to the translated block.

F. Mapping table

The mapping hash table contains entries for all basic blocks.
An entry in this table consists of a pointer into the user
program and a pointer into the trace cache. This decision leads
to an 8 byte stride for this table.

The hash function is designed to return a relative offset in
the hash table. Adding the result from the hash function to
the base pointer of the mapping table returns the address of a
table entry. Inlined machine code can check entries efficiently
this way.

The hash function needs to be fast, flexible and inline-
able. The overhead for hashing should be low, and there-
fore a complex hashing mechanism was avoided. After tests
with different SPEC CPU2006 benchmarks and other bina-
ries fastBT uses the simple hash function (addr<<1) &
(HASH_PATTERN). The original address is shifted one bit
to the left and binary anded with HASH_TABLE_SIZE - 1
and the last three bits are set to 0. In this implementation the
hash size must always be a power of two.

In the case of a hash collision (e.g., the address value is not
equal NULL) the entry is stored in the next empty slot.

G. Signal and syscall handling

Instrumented environments need special treatment for sig-
nals and system calls. A task or thread can schedule individual
signal handler functions and execute system calls. The kernel
transfers control from kernel-space back to user-space after



a system call or after the delivery of a signal. A user-space
binary translator cannot control these control transfers, but
must rewrite any calls that install signals or execute system
calls.

fastBT catches signal handlers and system calls and wraps
them into trampolines that return the control flow to translated
code. Currently fastBT is able to translate signals installed
by signal and sigaction and all system calls, covering both
interrupts and the sysenter instruction. The sysenter-handling
is of course specific to the syscall handling of the Linux kernel
2.6 [12].

H. Overheads in translated code

In this section we discuss the runtime overhead of the trans-
lated program. The overhead introduced into the translated
program is the major source of any slowdown relative to the
unmodified binary; the constant translation and initialization
overheads are negligible in most cases.

Indirect jumps, indirect calls and return instructions: These
instructions are the most frequent instructions that incur a
runtime overhead.

In all three cases the target of the execution is unknown and
the program must look up a pointer to the original program in
the mapping table to get the pointer into the trace cache. The
translation scheme is similar in all cases as stated in Figure
4. As an indirect call is only a push of the current eip and
an indirect jump, the translator simply needs to add the push.
Return instructions are also similar to indirect jumps. This
instruction pops a value from the stack and indirectly jumps
to this value.

jmp reg/mem call reg/mem ret
- push eip -
push reg/mem push reg/mem (addr. on stack)
push tld push tld push tld
call ind_jmp call ind_jmp call ind_jmp

Fig. 4. Translation of indirect jumps/calls and return instructions, tld is
thread local data.

If the target is already translated and the lookup in the
mapping table is a hit in the first row, then the call of
ind_jmp adds 21 instructions. This overhead is very high and
various optimizations (described in Section III) try to reduce
this overhead. If the target is not translated, then the translator
must translate this region first. Even more overhead results
from hash misses where the lookup function loops through
the mapping table to find the correct entry.

In these cases a single instruction in the original code is
mapped to multiple instructions in the translated code block.
An indirect jump adds 20 instructions in the best case if the
fast mapping table lookup (described in section III-A) is used,
and even more instructions are used to recover from a miss.

I. Statistics

To evaluate optimizations and to get some statistics about
the programs, fastBT offers profiling information that can
be activated to count important numbers like: number of

translated instructions and basic blocks, number of executed
indirect jumps, number of function calls, and others.

III. OPTIMIZATION

Function calls and the following return appear as matching
pairs in the execution stream, and this relationship offers
promising optimization points. The occurence of indirect
jumps in general and the lookup in the mapping table offers
another opportunity.

Profiling shows that most overhead is generated by indirect
jumps and some overhead is generated by the mapping table
lookup. The overhead for the initialization and translation
is negligible if not all used pages are initialized with, e.g.,
the halt instruction (this can be very useful for debugging
purposes).

A. Fast mapping table lookup

The second largest overhead results from the mapping table
lookup. Due to the design of the hash function, fastBT has a
low collision rate of nearly 0% for most benchmark programs
(see Table II).

To benefit from this fact fastBT implements a fast mapping
table lookup in assembly code that is inlined into the trace
cache. This code sequence only checks the first element; if
this location is not a direct hit, then the lookup falls back to
the slower function with a loop to retrieve the target address.

B. Return optimizations

Return instructions represent a major fraction of indirect
jumps that cause the largest instrumentation overhead for
fastBT. fastBT offers several different optimization strategies
for return instructions. These optimizations reduce the costs
of the indirect control transfers.

Shadow return stack: To reduce the number of lookups
and indirect jumps, fastBT implements a shadow return stack
similar to FX!32 [9]. This stack contains only pairs of return
addresses and translated addresses.

Call instructions are extended by some additional instruc-
tions that push the translated address and the current instruc-
tion pointer to the shadow stack.

Return instructions are then replaced by a check if the top
of the stack is equal to the top of the shadow stack. If this
check succeeds, then fastBT transfers control to the translated
address on the shadow stack.

Although this optimization needs only 18 instructions to
replace a call/return pair, and this code sequence is faster than
the unoptimized version, it is in every case slower than the
inlined fast return.

Return prediction: Return prediction leaves the original call
unchanged, but caches the target of the last translated and
untranslated return inline. When the code fragment with the
return prediction is executed, the code first checks if the cached
address matches the current address. A match causes a direct
jump to the cached translated address, whereas a mismatch
overwrites the cached address with the new target and branches
to the translated address.



Figure 5 shows the code fragment for the inlined prediction.
fastBT only executes 4 instructions, if the prediction is correct.
An incorrect prediction needs 8 additional instructions next
to an indirect jump with at least 35 instructions to fix the
cached values leading to 43 instructions in total. To benefit
from this optimization fastBT needs more than 48.7% correct
predictions to outperform the indirect jump.

cmpl $cached_rip, (%esp)
je hit_ret
pushl tld
call ret_fixup
hit_ret:
addl $4, %esp
jmp translated_rip

Fig. 5. Return instruction with an included prediction, rip is the return
instruction pointer and tld the pointer to thread local data.

Inlined fast return: This optimization inlines a fast mapping
table lookup where needed into the trace cache. If the first
lookup is a hit, then fastBT can branch directly to the
translated target. Otherwise an indirect jump is used.

The HASH PATTERN used in Figure 6 is already statically
shifted right to remove the shift operation. fastBT also uses
extended address calculation to reduce the number of instruc-
tions needed to get the hash table offset.

pushl %ebx
pushl %ecx
movl 8(%esp), %ebx # load rip
movl %ebx, %ecx
andl HASH_PATTERN, %ebx
subl maptbl_start(0,%ebx,4), %ecx
jecxz hit
popl %ecx
popl %ebx
pushl tld
call ind_jmp
hit:
movl maptbl_start+4(0,%ebx,4), %ebx
movl %ebx, 8(%esp) # overwrite rip
rip popl %ecx
popl %ebx
ret

Fig. 6. A translated return instruction with the fast return optimization, rip
is the return instruction pointer and tld the pointer to thread local data.

Using this implementation, fastBT needs 12 instructions for
a return in the best case with a direct mapping table hit.

C. Indirect call prediction

fastBT applies the concept of return address prediction to
predict indirect calls as well. This optimization caches call
targets, and if the prediction is correct execution can jump
directly to the translated target. Otherwise fastBT calls a fixup
routine that stores the new target in the cache and then jumps
to the translated address.

This optimization is well suited for shared libraries as tar-
gets are loaded dynamically after the program has started and

the library loader uses indirect calls. Furthermore the targets
of these calls remain constant during program execution; as a
consequence the target cache has a high hit rate.

We applied this optimization to all indirect jumps, but the
result was a high miss rate with diminishing returns.

D. Function inlining

Profiling shows that function calls are responsible for the
largest overheads. As fastBT already extracts traces into the
trace cache, the addition of function inlining was an obvious
extension.

This optimization served as a test of the extensibility of the
fastBT framework. We implemented basic function inlining in
no more than about 50 lines of code. Every time the translator
sees a function call it checks the length of the callee, and if
the function contains only one basic block it is inlined into
the current basic block.

We also explored different strategies for inlining depth and
aggressiveness to allow inlining of multiple functions and
basic blocks, with diminishing returns for more complicated
schemes.

IV. PERFORMANCE EVALUATION

In the evaluation of fastBT we are interested in the compar-
ative performance to other systems as well as in the instrumen-
tation overhead. We would also like to know the significance
of different optimizations for the individual benchmarks. Such
performance data makes it possible to characterize the different
benchmarks and to reason which other optimizations can be
used for further improvements.

A. Experimental setup

All benchmarks were executed on a single machine with an
Intel Core2 Duo CPU at 3.00GHz and 2GB main memory.
The system runs on Ubuntu 7.10 with gcc version 4.1.3 and
glibc version 2.6-22.

The SPEC CPU2006 benchmark suite version 1.0.1 is used
to evaluate the single threaded performance. We compare
fastBT with other binary translators: HDTrans [22] version
0.4.1, DynamoRIO [5; 6] version 0.9.4 and PIN [17] revision
19012.

B. Instrumentation overhead

Instrumentation overhead is measured compared to an exe-
cution without binary translation. fastBT is compiled with gcc
and -O3. These fastBT optimizations are activated in various
runs:

• Inlined fast return (IFR)
• Return prediction (RP)
• Fast mapping table lookup (FM)
• Prediction for indirect calls (PIC)
• Function inlining (FI)
• Fast indirect jump (FIJ)
Figure 7 shows the performance of fastBT compared to

untranslated code. We measure the overhead factor of all C
and C++ based SPEC CPU2006 benchmarks.
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no opts w/o FIJ w/o FI
w/o PIC RP w/o IFR IFR+FM+PIC+FI+FIJ

Fig. 7. SPEC CPU2006 benchmarks slowdown relative to untranslated code,
comparing different optimizations

The fastest setting is a combination of an inlined
fast return, the fast mapping table lookup, prediction for
indirect calls, function inlining, and fast indirect jump
(IFR+FM+PIC+FI+FIJ). All other bars refer to this implemen-
tation and replace or remove certain optimizations.

Performance is good for most benchmarks (0-10% over-
head). A second group of benchmarks has a moderate overhead
below 52%. A third group of five programs suffers from a high
overhead ranging from 88% to 103%.

Overhead analysis: Table I shows characteristics of the
different SPEC CPU2006 benchmarks. This table reveals that
the gcc benchmark pays a high translation cost since the
binary is invoked 9 times (and therefore the binary translator
is also invoked 9 times). This initial translation cost is hard to
amortize; the gcc benchmark is the only one where translation
overhead is significant. Two other benchmarks, perlbench and
gobmk, also have a relatively large code base and are started
multiple times.

Table II presents a per benchmark statistic of the
SPEC CPU2006 benchmarks using the fastest configuration
(IFR+FM+PIC+FI+FIJ). This table, compared with Figure 7,
explains why binary translation is in some cases slower than

Benchmark Instrs. BBs Execs. Ovhd.
400.perlbench 248,753 54,288 3 1.88
401.bzip 72,261 11,809 6 1.06
403.gcc 2,244,313 500,030 9 1.39
429.mcf 8,207 1,467 1 0.99
445.gobmk 540,224 99,735 5 1.34
456.hmmer 19,667 3,523 1 1.00
458.sjeng 16,604 3,337 1 1.49
462.libquant. 8,209 1,230 1 1.03
464.h264ref 161,107 22,052 3 1.43
471.omnetpp 50,398 10,281 1 1.52
473.astar 27,755 4,698 2 1.10
483.xalan. 158,461 27,210 1 2.00
433.milc 20,237 2,750 1 1.06
435.gromacs 41,025 5190 1 1.01
436.cactus. 44,365 7,371 1 1.02
444.namd 36,545 3,790 1 0.99
447.dealII 103,520 13,784 1 1.99
450.soplex 79,152 11,606 2 1.08
453.povray 64,054 11,368 1 2.03
454.calculix 92,054 13,964 1 1.03
470.lbm 6,912 1,099 1 0.99
482.sphinx3 31,403 5,308 1 1.09

TABLE I
PER BENCHMARK STATISTIC WITH SUM OF TRANSLATED INSTRUCTIONS

FOR ALL EXECUTIONS (ACTIVE CODE), NUMBER OF BASIC BLOCKS, HOW
MANY TIMES THE BINARY TRANSLATOR WAS STARTED PER BENCHMARK

RUN AND THE MINIMAL OVERHEAD/SLOWDOWN.

the untranslated run.
Most of the overhead results from the following four dif-

ferent sources:

• Function pointers: Calling a function through a function
pointer results in an indirect call. Every indirect call leads
to the execution of overhead instructions. The memory
location of the function pointer is read and the target
is then mapped into the trace cache. To reduce this
overhead the last target of the function pointer is saved
if the indirect call prediction optimization is activated.
If the function pointer changes, then fastBT must do an
additional lookup for the new address. The perlbench,
gobmk, and sjeng benchmarks have a high collision rate
in the mapping table.

• Number of function calls: Every function call incurs
a linear overhead. The cost of function calls can be
decreased through inlining. The dealII benchmark shows
nicely that the overhead can be reduced through inlining;
fastBT does not pay the additional cost for a function call
in 54% of the calls.

• Jump tables (switch): Switch constructs or jump tables
are another source of overhead. The C compiler translates
switch constructs into indirect jumps. The targets of the
memory locations do not change, but the binary translator
must add and execute an additional lookup for each of
these jumps.

• Mapping cache misses: A high miss rate in the mapping
table leads to additional overhead for every indirect jump
and every indirect call. This problem arises if the mapping
table is over full or if multiple targets are close together.



Benchmark Map. misses (miss%) Function calls (inlined) Ind. jumps Ind. calls (miss%)
400.perlbench 246,667 (0.00%) 21,908,972,069 (9.50%) 21,929,721,015 3,902,298,779 (89.14%)
401.bzip2 6 (0.00%) 6,686,411,394 (0.00%) 1,870,766 1,867 (9.86%)
403.gcc 41,172,650 (0.81%) 11,416,485,263 (2.82%) 5,040,160,816 653,553,951 (4.08%)
429.mcf 0 (0.00%) 6,937,298,559 (0.05%) 1,708,666 574,634 (0.01%)
445.gobmk 23,892,158 (16.23%) 17,818,856,119 (1.33%) 117,474,377 185,811,452 (15.96%)
456.hmmer 15 (0.00%) 219,205,278 (26.78%) 163,062,857 1,138,876 (0.01%)
458.sjeng 1 (0.00%) 21,939,941,742 (1.25%) 10,992,904,415 5,070,023,325 (64.05%)
462.libquant. 0 (0.00%) 1,762,122,564 (0.00%) 979 209 (7.18%)
464.h264ref 1,133,513,780 (42.64%) 9,148,416,877 (30.36%) 2,316,733,272 28,445,058,103 (1.20%)
471.omnetpp 335,404,293 (10.57%) 17,282,090,091 (19.29%) 3,151,849,446 2,733,835,044 (0.76%)
473.astar 100 (0.00%) 17,389,970,212 (31.63%) 10,809,621 4,996,462,097 (0.00%)
483.xalan. 51,717,068 (1.96%) 19,825,915,425 (13.87%) 2,426,718,169 9,161,983,117 (2.30%)
433.milc 0 (0.00%) 6,707,912,535 (1.43%) 11,999,314 3,856,839 (0.00%)
435.gromacs 2 (0.00%) 3,510,490,537 (75.48%) 27,444,253 3,274,839 (0.86%)
436.cactus. 5 (0.00%) 1,670,570,147 (0.53%) 1,650,753,737 223,565 (22.09%)
444.namd 2 (0.00%) 33,516,882 (20.47%) 14,909,541 1,969,176 (0.00%)
447.dealII 1,137,176 (0.01%) 52,965,608,272 (54.00%) 21,163,171,969 540,898,547 (0.13%)
450.soplex 235,035 (0.01%) 2,482,695,709 (3.54%) 1,722,689,963 27,488,899 (0.00%)
453.povray 49,590 (0.00%) 18,698,952,109 (8.10%) 433,067,223 7,072,491,358 (29.10%)
454.calculix 1,038 (0.00%) 5,200,465,040 (25.43%) 502,727,282 11,226,880 (0.00%)
470.lbm 0 (0.00%) 5,273,650 (49.98%) 2,627,289 3,724 (0.75%)
482.sphinx3 5,662 (0.00%) 7,489,332,386 (10.54%) 268,757,951 6,126,858 (0.06%)

TABLE II
PER BENCHMARK NUMBER OF MAPPING TABLE MISSES, PERCENTAGE COMPARED TO OVERALL MISSES, NUMBER OF CALLS, PERCENTAGE OF CALLS

THAT ARE INLINED, NUMBER OF INDIRECT JUMPS, NUMBER OF (PREDICTED) INDIRECT CALLS AND PERCENTAGE OF MISPREDICTIONS.

This miss rate can be lowered with adaptive optimization
through remapping of hot entries, a larger mapping table,
or a different hash function. Each of these possible
remedies leads to either additional overhead or a larger
memory footprint and initialization cost.

Each of the four worst performing benchmarks (perlbench,
sjeng, dealII and povray) include multiple of the above men-
tioned factors. The most dominant overhead is the combined
effect of the collisions in the mapping table and the overhead
induced by the indirect call handling.

C. Single-threaded comparative performance

Figure 8 shows the performance of fastBT relative to other
binary translation systems.

The comparison between fastBT, DynamoRIO and PIN
shows that fastBT performs overall as well as intermediate-
representation-based (IR-based) translation systems that use
intermediate representations instead of tables, but without the
complexity of such a system. Exceptions are the perlbench,
sjeng and povray benchmarks where fastBT is slower due to
the high miss rate of our indirect call prediction.

An important difference between fastBT, HDTrans, and
DynamoRIO is that fastBT supports the new sysenter system
call interface. DyanmoRIO does not support this interface and
exits with an error message. HDTrans fails to maintain control
after the return of any sysenter system call and the program
continues untranslated. Both systems support only the older
interrupt driven system call interface.

D. Code size

The code (of the translator) generated by fastBT is compact.
The final library fits into 88k of code, including all selected

features and optimizations. HDTrans, DynamoRIO and PIN
all need larger runtime environments with 160k of code, 324k
of code and 8,607k of code respectively. Disadvantages of
large libraries are additional cache misses and pollution of the
instruction cache. Due to the small memory footprint fastBT
interfers less with the original code.

V. RELATED WORK

Binary translation (BT) is extensively covered in the litera-
ture, and numerous binary translators exist both from academia
and industry. BT dates back to the 80ies with work on
Smalltalk-80 [10] and a simulator for an IBM System/370 [18]
where complete code blocks were translated.

In this section we survey some binary translators that are
similar to fastBT either in the target application or in usability.
There are two kinds of binary translators: the first group (e.g.,
HDTrans, Mojo [23] and JudoDBR [20]) consists of low-level,
table-based binary translators, and the second group (e.g.,
DynamoRIO, PIN, and Valgrind [19]) consists of high-level,
IR-based implementations.

The advantage of the IR-based approaches is that more
sophisticated optimizations are possible, but the disadvantage
is that the translator needs to compensate a higher runtime
overhead. Other binary translators like the one from Kistler
et al. [16] or Hiser et al. [14] try to speed up program
code using profiling and adaptive optimizations to overcome
the additional instrumentation cost. FX!32 [9] uses a dual
approach. On one hand it uses cross-platform emulation for
infrequently executed code and on the other hand employs
profile generation and offline static recompilation of hot code
to speed up overall execution. A hash map is used to map
between the emulator and the translated code.
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Fig. 8. SPEC CPU2006 benchmarks performance compared to other systems
(relative to untranslated code)

All binary translators need some way to handle indirect
branches efficiently. Hiser et al. [15] cover different indirect
branch mechanisms like lookup inlining, sieves, and a trans-
lation cache.

A related topic is full system translation or virtualization.
QEMU [3] provides full system cross machine virtualization
using dynamic translation. VMWare [11; 8] is a full system
virtualization tool that uses dynamic translation for executed
privileged instructions in supervisor mode, unlike Xen [2] that
uses para-virtualization, replacing the privileged instructions
already at the source level.

A. HDTrans

HDTrans [22; 21] is a light-weight, table-based instrumen-
tation system. A code cache is used for translated code as
well as trace linearization and optimizations for indirect jumps.
HDTrans resembles fastBT most closely with respect to speed
and implementation, but there are significant differences.

In addition to the support of the sysenter instruction, fastBT
raises the level of interaction with the translation system.
HDTrans requires a user to supply a low-level translation
table that specifies the correct action for each translated
instruction; fastBT offers a high-level interface using the table
generator. The high-level interface makes it possible to use
groups of instructions or properties (e.g., accesses to memory,
special-function instructions) as well as individual instructions.

HDTrans requires the user to specify any translation directly
on the machine-code representation.

Compared to fastBT, HDTrans translates longer chunks of
code at a time, only stopping at conditional jumps or return
instructions. This strategy can result in longer stalls for the
program. Trampolines to start the translator for not already
translated targets are inserted into the basic blocks itself.
Therefore the memory regions for these instructions cannot
be recycled after the target is translated.

B. Dynamo and DynamoRIO

Dynamo is a dynamic optimization system developed by
Bala et al. [1]. DynamoRIO [5; 6; 13] is the binary-only IA-
32 version of Dynamo for Linux and Windows. The translator
extracts and optimizes traces for hot regions. Hot regions are
identified by adding profiling information to the instruction
stream. These regions are converted into an IR, optimized and
recompiled to native code.

Compared to fastBT, DynamoRIO incurs a high foot print
(due to profiling, IR extraction, and recompilation) and it
remains unclear whether the proposed optimizations offer
a significant benefit over the simple table based translation
approach because the overhead for profiling, trace selection, as
well as IR generation and optimization must be compensated.

C. PIN

PIN[17] is an example of a dynamic instrumentation system
that exports a high-level instrumentation API that is available
at runtime. The system offers an online high-level interface
to all instructions. PIN uses the user-supplied definition and
dynamically instruments the running program.

In contrast to PIN, fastBT offers the high-level interface
at compile time. A table-based translator that is then used
at runtime is generated using the high-level interface. This
limits fastBT’s alteration possibilities at runtime but removes
unneeded flexibility. To keep the design simple fastBT also
does not implement transformations like register reallocation,
although they could be added to the fastBT framework.

VI. CONCLUDING REMARKS

We present fastBT, a low overhead, simple binary translator
that yields good performance: the translation is fast and the
translated program executes efficiently. fastBT is highly con-
figurable at compile time using a table generator, so a user can
express the translation at a high level and focus on customizing
the translation actions to avoid execution inefficiencies. Only
the generated multilevel opcode tables are used at runtime to
translate instructions from the user program. This approach to
generate a binary translator results in a lean translation engine
offering a more flexible interface than a low-level table.

Indirect control transfers limit performance of software-
based translations. Although the amount and severity of these
control transfers can be reduced through optimizations, they
cannot be overcome with software smartness alone.

Nevertheless, such overhead can be tolerated; as demon-
strated by fastBT’s performance, the execution penalty intro-
duced into the translated program is tolerable. Since fastBT



is easily extendable with new optimizations, it provides an
attractive platform to investigate approaches to binary trans-
lation and to generate realistic efficient translator engines.
As binary translation is recognized as an important part of
the software development tool chain, a table-based generator
like fastBT provides the best approach to unify profiling of
existing applications, runtime software modifications, as well
as debugging and instrumentation of complete programs.
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