
Igor: Crash Deduplication Through Root-Cause Clustering
Zhiyuan Jiang

NUDT
Xiyue Jiang

NUDT
Ahmad Hazimeh

EPFL

Chaojing Tang
NUDT

Chao Zhang
Tsinghua University

Mathias Payer
EPFL

ABSTRACT
Fuzzing has emerged as the most effective bug-finding technique.
The output of a fuzzer is a set of proof-of-concept (PoC) test cases for
all observed “unique” crashes. It costs developers substantial efforts
to analyze each crashing test case. This, mostly manual, process has
lead to the number of reported crashes out-pacing the number of
bug fixes. Automatic crash deduplication techniques, which mostly
rely on coverage profiles and stack hashes, are supposed to alleviate
these pressures. However, these techniques both inflate actual bug
counts and falsely conflate unrelated bugs. This hinders, rather
than helps, developers, and calls for more accurate techniques.

The highly-stochastic nature of fuzzing means that PoCs com-
monly exercise many program behaviors that are orthogonal to the
crash’s underlying root cause. This diversity in program behaviors
manifests as a diversity in crashes, contributing to bug-count in-
flation and conflation. Based on this insight, we develop Igor, an
automated dual-phase crash deduplication technique. By minimiz-
ing each PoC’s execution trace, we obtain pruned test cases that
exercise the critical behavior necessary for triggering a bug. Then,
we use a graph similarity comparison to cluster crashes based on
the control-flow graph of the minimized execution traces, with each
cluster mapping back to a single, unique root cause.

We evaluate Igor against 39 bugs resulting from 254,000 PoCs,
distributed over 10 programs. Our results show that Igor accurately
groups these crashes into 48 uniquely identifiable clusters, while
other state-of-the-art methods yield bug counts at least one order
of magnitude larger.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
Crash Grouping, Fuzzing
ACM Reference Format:
Zhiyuan Jiang, Xiyue Jiang, Ahmad Hazimeh, Chaojing Tang, Chao Zhang,
and Mathias Payer. 2021. Igor: Crash Deduplication Through Root-Cause
Clustering. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’21), November 15–19, 2021, Virtual Event,
Republic of Korea. ACM, New York, NY, USA, 19 pages. https://doi.org/10.
1145/3460120.3485364

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11.
https://doi.org/10.1145/3460120.3485364

1 INTRODUCTION
The main focus of software-testing research is finding bugs. Maxi-
mizing bug discovery is a key subject of interest across the develop-
ment stack, from the physical layer [14, 59, 61, 77] to the application
layer [5, 15, 51, 62, 71, 83]. The assumption “we can always afford
to fix bugs” powers the drive for bug-finding techniques that yield
large numbers of crashes in short time frames, the most promi-
nent of which is fuzz testing. Big players in the software industry
also motivate this movement, providing open-access reporting plat-
forms [4, 29, 56] and bug bounties for their large user-bases. With
little incentive to triage crashes, users and software testers fre-
quently submit raw findings/crash-dumps, leaving it to software
maintainers to bear the weight of distilling crashes and fixing bugs.
With more crashes reported, more time is spent on crash triage and
pruning duplicate reports, leaving maintainers with less time for
fixing bugs and improving software quality. Large fuzzing farms
(e.g., ClusterFuzz [30], OSS-Fuzz [68])—which run around the clock
and automatically submit crash reports—exacerbate this problem.
For example, as of late April 2021, there were 979 open Linux ker-
nel bugs, with the earliest submitted in November 2017 (based on
syzbot statistics [31]).

Solutions to this problem range from collaborative, where main-
tainers rely on the community to provide actionable analysis in their
reports, to systematic, where heuristics are used over large crash
dumps to filter out redundancies and duplicates [1, 19, 21, 41, 80].
These heuristics typically rely on dynamic program behaviors to
identify root causes and answer the question “given a crashing test
case, what is the most likely cause for the crash?” For example,
Aurora [7] presents a root cause identification method based on
delta debugging [85]: both faulty and benign test cases are executed
and a disjunction in program behaviors marks the bug. In contrast,
crash bucketing (cf. grouping) shifts the focus from pinpointing
the cause of a crash to grouping crashes based on their root cause.
Crash bucketing answer the question “given a number of crashing
test cases, which crashes trigger the same bug?” Crash bucketing
techniques are widely used in practice [43] and rely on crash sites,
coverage profiles, or stack hashes, to cluster crashes.

Crash Sites. All bugs crash at a particular program location.
These crash sites (e.g., the address stored in the instruction pointer
at the time of crash) serve as a coarse-grain bug identifier. Unfortu-
nately, crash sites are imprecise and lead to bug misclassification
(e.g., for use-after-free bugs, objects may be arbitrarily reused, trig-
gering a broad set of “unique” crashes). Crash sites both under- and
over-estimate bug counts and are not used in practice.

Coverage Profiles. Coverage-guided fuzzers commonly use their
coverage data to uniquely identify crashes. For example, AFL [83]

https://doi.org/10.1145/3460120.3485364
https://doi.org/10.1145/3460120.3485364
https://doi.org/10.1145/3460120.3485364


considers crashes that exercise new control-flow edges or omit com-
mon edges as “unique”. The fine-grained nature of edge coverage
makes it sensitive to small changes in control-flow and causes crash
count inflation; slight modifications in the path to a bug result in
a new crash. Coverage profiles overestimate bug counts by 2–3
orders of magnitude [33, 43].

Stack Hashes. Stack hashes provide function-sensitive labels for
crashes and are commonly used by fuzzers (e.g., honggfuzz [71])
and fuzzing farms (e.g., ClusterFuzz [30]) alike. Stack hashing accu-
mulates (the last 𝑁 ) function calls (on the stack) leading to the crash
site, hashing these traces to form unique bug identifiers. Compared
to coverage profiling, stack hashing is more coarse-grained and
results in fewer crash buckets. However, stack hashes are prone to
misclassification, both over- and under-approximating the number
of bugs (the former is due to different paths to the crash site [7, 22],
while the latter is due to bugs sharing the same call sequence). Stack
hashes overestimate bug counts by 1–2 orders of magnitude [43].

Inaccurate crash grouping techniques (such as those previously
described) waste precious developer time. In particular, bug identi-
fiers (e.g., coverage profiles, stack hashes) are susceptible to fluctu-
ations in program behavior. Coverage-guided fuzzers—which typi-
cally aim to maximize code coverage—amplify such fluctuations,
yieldingmany crashing test cases that exercise “noisy” code extrane-
ous to the underlying root cause. This noise impedes control-flow-
based deduplication techniques, inflating bug counts. Moreover,
accurate bug classification relies on identifying a bug’s character-
istic trigger. Identifying this trigger in a partial execution trace is
made difficult if (a) the trigger is missing from the execution trace
(e.g., if the trace is too coarse-grained), and/or (b) the execution trace
contains extraneous elements (e.g., if the trace is too fine-grained).
This calls for a new approach to crash grouping; one that removes
noise from the execution trace—to accurately group paths—and
preserves critical control-flow information—to accurately isolate
different root causes.

Whereas a coverage-maximizing strategy is ideal for finding
bugs through fuzzing, we propose that the counterpart—coverage-
minimizing fuzzing—is key to minimizing an execution trace and
enabling effective crash grouping. We make crash labels more pre-
cise by trimming unnecessary execution trace elements (i.e., noise),
leading to more concise deduplication. We also address the short-
comings of stack hashes (which operate at function-call granularity)
by using control-flow graphs (CFG) for a more complete view of
a crash’s execution trace. Using CFGs preserves critical control-
flow information and allows for aggressive pruning of redundant
(executed) code, leading to more accurate crash grouping.

We present Igor1, a dual-phase crash deduplication technique
that leverages a coverage-reduction fuzzer and a CFG similarity
metric to cluster crashes by their critical behaviors. By simplifying
each crash’s execution trace, we obtain test cases that exercise the
minimized behavior necessary for triggering a bug. Then, we per-
form a graph similarity comparison over the CFGs of all minimized
execution traces to group them into closely-packed clusters, each
mapping back to a unique root cause.

We answer the following research questions:
1In Terry Pratchett’s Ankh-Morpork, the Igors are a group of humble professional
servants (often to mad scientists) that are proficient transplant surgeons.

RQ1 What constitutes ideal crash grouping and why is it not
achievable in practice?

RQ2 How strong is the effect of dense execution traces on crash-
count inflation, and can sparsity promote precision?

RQ3 What metric is best suited for capturing and isolating root
causes?

We make the following contributions: (i) a coverage-reduction
fuzzer which applies a minimizing fitness function over the col-
lected edge coverage to shrink test cases; (ii) a new metric for crash
grouping, based on control flow graph similarity using the Weisfeil-
er-Lehman Subtree Kernel algorithm [45]; and (iii) a ground-truth
benchmark for evaluating crash grouping techniques, containing 52
CVEs2 and 254,000 crashing test cases from 14 real world programs
(generated over 58.7 CPU-years of fuzzing). With the source code
of these programs and patches of these bugs, we develop analysis
tools and manually label these test cases with ground-truth (in
approximately 30 human-days). This benchmark enables us to test
the accuracy of Igor.

To aid both developers (so they can quickly and accurately un-
cover a crash’s root cause) and researchers (so they can reproduce
and expand on our results), we make our Igor prototype and bench-
mark available at https://github.com/HexHive/Igor.

2 BACKGROUND AND INTUITION
Crash bucketing groups test cases to isolate a crash’s root cause.
Accurate crash bucketing requires: (i) grouping together crashes
with the same root cause (minimizing type I errors); (ii) creating
new groups for crashes with different root causes (minimizing type II
errors); and (iii) capturing accurate bug context. Capturing accu-
rate bug context requires complete modeling and analysis of pro-
gram behavior. However, existing modeling/analysis techniques
(e.g., symbolic execution) do not scale [6]. Instead, practical crash
bucketing relies on error-prone heuristics. Reducing these errors
requires (a) behavioral metrics that correlate with bug context, and
(b) execution trace trimming to minimize noise.

2.1 Behavioral Metrics
Bug context is the critical set of program behaviors accumulated
and leading up to the crash site. Capturing bug context is key to ac-
curate crash grouping. However, approximating program behavior
is a three-way trade-off between sensitivity, accuracy, and scalabil-
ity. On the upper end of the sensitivity spectrum, full path coverage
(control and data flow) is the most precise: each test case exercises
a unique path. This metric thus has a minimal type II error rate,
achieving high accuracy in distinguishing different bugs. However,
its precision also results in fine-grained grouping of crashes, and
thus boasting a high type I error rate and a low accuracy in identi-
fying similar root causes. Collecting precise path coverage is also
infeasible in practice due to the large state space most programs
have, and the scalability challenges that arise from this. On the other
end of the spectrum, in singling out what program behavior led to
a crash, Boolean function coverage is imprecise: it only captures
the set of functions possibly involved in triggering a crash, and
does so without conserving the order of code execution. Test cases

2In this paper, when two programs share a CVE, we count it as two CVEs

https://github.com/HexHive/Igor


1 switch(format):
2 case TAG_FMT_USHORT:
3 info_value->u = get16u(vptr, motorola_intel);
4 break;
5

6 case TAG_FMT_ULONG:
7 info_value->u = get32u(vptr, motorola_intel);
8 break;
9

10 case TAG_FMT_SSHORT:
11 info_value->ur.num = get32u(vptr, motorola_intel);
12 info_value->ur.den = get32u(4+(char *)vptr,

motorola_intel);↩→

13 break;
14 ...

Listing 1: Code snippet for CVE-2018-14883.

resulting from the same bug or from different bugs are likely to dis-
play identical coverage, thus reducing type I error rates but raising
those of type II. Nevertheless, Boolean function coverage requires
minimal resources to measure and collect, improving scalability.

2.1.1 Research Context. According to Dhaliwal et al. [23], 80 % of
the root causes of a bug are located on the call stack at the time of the
crash. Several research projects have taken this notion and explored
different stack hashing techniques [11, 13, 21, 42, 46, 64, 66]. Stack
hashing is fast and easy to deploy, and is suitable for large-scale
campaigns to batch-process a large number of test cases, but is prone
to both type I and II errors and lacks high-quality classification.

Execution traces can also be used to classify test cases. This ap-
proach typically uses binary translation [52] or interposition [57].
Several taint-based approaches have also looked into classifying
test cases as a form of crash analysis. For example, CrashFilter [39]
automatically classifies a failing test case based on static taint anal-
ysis. RETracer[20] recovers early program state from a memory
dump based on a reverse taint analysis, after which an analyst man-
ually groups test cases. REPT [19] extends RETracer and achieves a
more accurate classification result by reconstructing the data flow.
Finally, POMP [80] classifies crashes from the perspective of the
different contributions of data flow to program crashes.

These taint-based methods group crashes from the perspective
of data flow. They are more precise than stack hashing. However,
taint-based methods often do not scale to complex programs as they
need to record a detailed program trace, which quickly exceeds
several 100GiBs for even simple programs, and require complex
symbolic reasoning over paths that use tainted input data to make
control-flow decisions. Taint-based methods can be effective if the
bug only depends on data flow and not on control flow decisions
based on tainted input data [15, 62, 76].

2.1.2 Challenges. Listing 1 (based on CVE-2018-14883 in PHP)
illustrates how a single bug can manifest as a crash in multiple
locations, breaking location- and call-stack- based grouping tools.
When triggered, the bug will cause vptr to point to an illegal ad-
dress. A crash occurs when the pointer is accessed, which happens
at lines 3, 7, and 11. Different values of format will cause a crash

1 void overflow_one(char* r, size_t size) {
2 char buffer[10];
3 memcpy(buffer, r, size); // crash here!
4 return;
5 }
6

7 void overflow_two(char* r, size_t size) {
8 int buffer_size = size;
9 char buffer[buffer_size];
10 memcpy(buffer, r, strlen(r)); // crash here!
11 return;
12 }

Listing 2: Two bugs sharing the same crash site.

in different functions (get16u or get32u). In contrast, Listing 2
shows how different vulnerabilities can crash in the same location.
There is an if-else structure in the program containing a unique
stack overflow vulnerability on each branch. After triggering the
vulnerability, the program eventually crashes when calling memcpy.
Although the crash location is the same, the crash is caused by dif-
ferent vulnerabilities. Due to the complexity of control flow paths
in programs, methods based on call stacks or crash sites cannot
distinguish between different and similar bugs, resulting in a high
misidentification rate [43].

In practice, finding the balance between sensitivity, accuracy,
and scalability requires identifying which behavioral metric most
closely correlates to the root cause. We conclude from our results
that minimized execution traces give the best insight into bug
triggers, making them amenable for similarity matching.

2.2 Test Case Reduction
Imperfections in behavioral metrics can be amplified by extraneous
data points in the recorded execution trace. While reducing the
sensitivity of the metric can improve its resilience against noisy
measurements, this only addresses a symptom of the noise but
not its source: entropy. In their study on fault localization, Christi
et al. [17] showed that the accuracy of localization benefits greatly
from reduced test cases. Test case reduction refers to continuously
reducing the size of the crashing input, under the premise that the
same crash is always triggered. In practice, streamlined test cases
improve the software development process; e.g., in vulnerability
mining, a minimized test case improves mutation efficiency and
guides the process towards interesting behaviors; and in crash anal-
ysis, it eliminates extraneous bytes to simplify control flow leading
up to the crash.

2.2.1 Research Context. The two main methods used in test case
reduction are delta debugging [85] and taint analysis [50].

Delta debugging is a popular approach that automatically mini-
mizes test cases by using two algorithms: simplification and isola-
tion [54]. The former continuously shrinks the size of the original
input file until it cannot find a smaller file that crashes the program,
and the latter searches for a passing input, which will become
a failing input again after satisfying additional constraints. The



most popular test case simplification tool for fuzzing campaigns,
afl-tmin [83], is based on this principle.

Taint analysis is a method that marks accessed registers and
memory as tainted when the program crashes, and then tracks
the source of the taint to mark all crash-related components in
the input, thereby reducing the crashing test case to the relevant
bytes. In general any forward or backward taint analysis can be
used [18], but in practice, the length of the input or trace is often
prohibitive. Long traces and complex inputs result in over-tainting
or under-tainting along with difficulties of keeping control of the
control-flow dependencies given the synthetic input. In practice,
the application of taint analysis to crash grouping is limited.

2.2.2 Challenges. Aurora [7] is a root-cause identificationmethod
that leverages delta debugging to distinguish between critical and
benign execution traces resulting from a crash. The process begins
with a crash diversification phase where the faulty input is mutated
to generate both crashing and non-crashing test cases. However,
diversification carries the risk of introducing new bugs that are
unrelated to the root cause under study. This is because Aurora
follows an exploratory fuzzing process (i.e., increasing coverage)
to generate new inputs.

Test case minimization may also introduce new bugs unrelated
to the original bug. This is combated with a stricter fitness function:
only a subset of the original trace must be executed, heavily limiting
exploration. While this does not provide a guarantee against the
introduction of new bugs, our evaluation shows that the error rate
is negligible in practice. In comparison to AFL’s crash mode [83]—
which shares the fuzzer’s fitness function—Igor introduces 90 %
fewer false positives.

The problem of minimizing crashes is also non-convex. Typically,
the fitness function for test case reduction is the size of the input
(in bytes). We instead propose minimizing the size of program’s
execution trace, thus reducing the execution complexity, rather than
the input’s size. Pruning the execution trace of a crashing test
case can yield more concise inputs that exercise the same desired
program behavior. A bug is triggered by a subset of all possible
execution traces, and through a minimization function over the
input space, a critical path to the root cause can be found and used
to triage the crash. However, program behavior is complex, and a
hill-climbing minimization process is likely to converge to a local
minimum. Intuitively, traces that converge to different local minima
may suggest different root causes, further complicating analysis.
However, we found that combining this process with a clustering
procedure led to minor variations in traces being overlooked in
favor of the global trace overlap.

2.3 Our Approach: Igor
While existing methods provide an initial step at reducing the
large number of crashing test cases requiring triage, the type I
and type II errors that these methods introduce result in uncer-
tainty and may even increase developer effort and/or cause missed
bugs. We address this imprecision by introducing a dual-phase
approach for crash analysis. This approach builds on a key observa-
tion: each bug has a core behavior that must be executed to trigger
the bug. A technique that extracts and matches this behavior can
distil the large amount of crashes into a precise set of unique bugs.

While analyzing large numbers of crashing test cases (together with
their ground-truth), we observed that test cases for the same bug
partially overlap in essential phases of their execution trace; the
bug trigger. Our technique, Igor, extracts an approximation of bug
triggers and then leverages topological graph matching to group
similar test cases into bug classes. This dual-phase approach for
efficient and effective crash grouping through root-cause analysis
thus combines and extends two important areas of research: test
case reduction—minimizing and simplifying test cases—and crash
grouping—determining if two inputs trigger the same or different
bugs. Broadly speaking, Igor leverages test case reduction to sim-
plify the execution traces observed by the test cases, so that we
can group crashes based on similarities in their coverage (i.e., we
improve the latter by leveraging the former).

3 IGOR DESIGN
Fig. 1 depicts the main components and workflow of Igor. Starting
with a set of crashing test cases, the preprocessing stage reduces
unnecessary analysis costs by leveraging sampling and afl-tmin.
Following this, the trace generator (IgorFuzz) records and mini-
mizes the execution traces of each preprocessed test case. The graph
analyzer then constructs control-flow graphs from the minimized
traces and extracts graph similarity metrics that describe each test
case. Finally, the cluster builder classifies the test cases into sepa-
rate groups, each identifying a unique root cause, and leverages a
validation loop to find an optimal clustering configuration.

3.1 Data Preprocessing
Igor’s key objective is to distil crashing, proof-of-concept test cases
(PoC) into unique bugs. To be practical, Igor must scale with increas-
ing numbers of PoCs. However, minimizing and grouping several
hundred thousands PoCs is time-consuming. Therefore, we employ
a two-stage preprocessing phase to reduce processing cost while
maintaining accuracy. First, we sample the PoC corpus to reduce
the number of analyzed test cases. Second, we leverage afl-tmin
as an initial test-case size minimization tool, allowing IgorFuzz to
converge to a solution faster.

Sampling. Although stack hashing is generally imprecise, it is
rare that two different root causes overlap in the entire call stack.
In other words, one bug may result in many diverse stack hashes
but one stack hash generally only maps to one bug. In our dataset,
only six (of 71) bug pairs in three programs contain shared stack
hashes. We leverage this observation to reduce the PoC corpus
by grouping PoCs based on their full-length call stack hashes. If
there are many PoCs mapping to the same unique stack hash, we
only process the 50 most diverse PoCs. This allows us to remove
highly-similar PoCs that map to the same bug, lowering the cost of
processing without impacting precision.

Minimization. Minimized test cases benefit fuzzing in two ways:
(i) the reduced size of the input leads to faster parsing and process-
ing by the target, yielding higher fuzzing throughput; and (ii) by
removing extraneous bytes from the input, the fuzzer’s mutations
are more likely to modify bytes critical to the behavior of the pro-
gram. The case of minimum-coverage fuzzing is no different and



IgorFuzz

Recording Execution 
Traces

Control Flow Graph 
Constructor

Similarity Calculator

Trace Generator

Similarity MatrixConcise Traces

Graph Analyzer

Crashes

Clustered Crashes

Iterate #Clusters

Spectral Clustering

Silhouette Score

Intermediate
Clustering Result

Cluster Builder

Minimized Pocs

Labeled 
Control Flow Graph

Data Preprocessing

Figure 1: Igor overview.

can thus be improved by preprocessing test cases to remove ex-
traneous bytes. We achieve this with the aid of afl-tmin [83], a
lightweight test case reduction tool included with AFL. Although
afl-tmin focuses exclusively on reducing the length of the input
(i.e., this is the sole metric it optimized for), it indirectly shortens
the length of the execution trace, further assisting IgorFuzz in
finding a minimal PoC. Afl-tmin also allows us to merge PoCs that
reduce to identical byte sequences. Using afl-tmin in the second
preprocessing stage increases IgorFuzz’s effectiveness in explor-
ing shorter execution traces. As discussed in Section 2.2, afl-tmin
may introduce new bugs. However, uncovering a new bug during
minimization with afl-tmin is rare: in our evaluation, only one
out of the 5,531 PoCs triggered a different bug after minimization
through afl-tmin. Our evaluation shows that the other nine PoCs
(for the same bug) remain correct, allowing Igor to correctly clus-
ter the nine PoCs to that root cause. While we lost one PoC (out
of 5,531) during minimization, enough PoCs remained to correctly
identify all unique bugs. This effectively means that we did not
introduce any false negatives in our evaluation through afl-tmin.

3.2 IgorFuzz: Minimum-Coverage Fuzzing
Coverage-guided fuzzing typically incorporates feedback to maxi-
mize code coverage and to trigger crashes. The highly-stochastic
nature of fuzzers means that they often find many diverse test cases
that trigger the same bug. This results in extraneous execution
traces that amplify the imprecision of the underlying metric and
hampers clustering.

The intuition behind minimum-coverage fuzzing is that a bug
only manifests when the faulty code is executed. Minimizing the
code executed before reaching faulty code reduces the amount of
state that the developer has to analyze during debugging. Given a
mechanism to measure what code was executed when a bug is trig-
gered, and a mechanism to sort the measurements across different
samples, it is possible to find the minimal code trace required to
trigger the bug, which we identify as the shortest bug-triggering
path (with the absolute minimum code trace being the empty set).
This observation accounts for the possibility that a bug can be
triggered through different paths. Through fuzzing, we perform a
search over the state space in the vicinity of the different bug paths,
with the objective of finding the shortest (simplest) execution trace.
Since fuzzing is a dynamic technique, it is inevitable that multiple
suboptimal solutions will be found; however, our evaluation shows

that the different solutions display features that are similar enough
to be grouped under the same root cause.

Ideally, the single shortest path to a bug is its best identifier.
An oracle that determines the shortest path would solve the crash
grouping problem, as all PoCs for the same bug would reduce to
the same path. Reducing an arbitrary PoC to the minimal path
is challenging, because it requires determining the shortest path
that still satisfies all of the bug context’s constraints. In practice,
this results in long execution traces that exceed the capabilities of
today’s solvers. For example, the shortest paths in our evaluation
contained over 91,000 basic blocks (in LibPNG), while the shortest
execution trace contained up to 22,563,000 basic blocks (in Poppler).

Existing test case reduction techniques use an objective function
that favors a smaller input size. This is an artifact of bug reporting
guidelines, which typically require a minimum working example as
a PoC. However, reducing the input size does not always translate
to reduced trace complexity. To highlight this effect, we conduct
a study on afl-tmin using five targets and ten bugs. While test
cases generally reduce in size, this does not necessarily guaran-
tee a reduction in the length of the execution trace. For example,
afl-tmin reduces OpenSSL’s x509 input size by 41.10 %, while only
pruning 4.83 % of CFG edges. Moreover, although afl-tmin reduces
the input size of pdfimages by 82.45 % (on average), 15.18 % of the
test cases execute more edges after reduction by afl-tmin. This
demonstrates that a smaller input size does not guarantee a simpler
execution trace. See Table 6 and Appendix C for our full results.

Similar to vulnerability mining, fuzzing provides an opportunity
for an efficient and scalable process that finds simpler inputs which
exercise similar behavior. To reduce the complexity of the execution
trace, we propose a new type of fuzzer with subtly different goals
than existing fuzzers. The fitness function in our fuzzer, IgorFuzz,
favors a simpler execution trace, by exercising fewer edges while
still crashing the target at the same location.

The goal of reduction is to find simpler test cases that trigger
the same bug. Multiple bugs can share the same crash site, and
minimized test cases present the risk of triggering different bugs at
the same location. However, in practice, the probability of simplified
test cases triggering different bugs is insignificant. It is important to
distinguish the use of crash sites between grouping and simplifying
crashes. When grouping based on crash sites, inputs are diverse and
presumably exercise different program behaviors. Due to this noise,
misclassified bugs will be common. However, when simplifying a



Algorithm 1 IgorFuzz algorithm
1: procedure FuzzTest(Prog, Seeds)
2: Queue← Seeds
3: while true do
4: for input inQueue do
5: if ¬isWorthFuzzing(input) then
6: continue
7: mutated ← Mutate(input)
8: if ¬isInteresting(mutated) then
9: continue
10: mutated .score← calcScore(Prog,mutated)
11: addToQueue(mutated)
12: procedure isFavorite(input)
13: return trimsDisjunctEdges(input)
14: procedure isWorthFuzzing(Prog, input)
15: return isFavorite(input) or isLarger(input .score)
16: procedure isInteresting(Prog, input)
17: return isCrashing(input) and

(hasSmallerBitmapSize(input) or
isEdgePruned(input) or
hasSmallerHitCountSum(input))

18: procedure calcScore(Prog, input)
19: score← input .score
20: if executesFaster(Prog, input) then
21: score← calcScoreFast(input)
22: if hitsFewerEdges() then
23: score← calcScoreSimple(input)
24: return score

test case based on its crash site, we reduce the complexity of the
execution trace while exercising similar program behavior. This
minimizes the likelihood of the new derived test case triggering a
different bug.

State-of-the-art fuzzers aim for maximal coverage to aid bug
discovery. Existing work in maximizing coverage can be grouped
into three areas: seed retention strategies [28, 62, 75, 78], seed
selection strategies [9, 15, 24], and seed scheduling strategies [8, 9,
81]. We guide the design of IgorFuzz based on insights from these
three areas and modify a generic feedback-guided greybox fuzzer
such as the one presented by Böhme et al. [9]. Algorithm 1 outlines
our coverage-minimizing algorithm and Fig. 2 gives an example of
IgorFuzz’s effectiveness.

3.2.1 Seed Retention Principles. We modify the isInteresting
method so that it only retains crashing test cases. We also introduce
two complementary rules for seed retention:
Rule 1 The seed does not exercise a common edge (i.e., at least
one edge is no longer executed, although overall coverage may
increase).
Rule 2 The seed exercises some edges with fewer hit counts (i.e.,
at least one edge is executed fewer times and no edge is executed
more times).

Through a hill-climbing optimization process over the coverage
space, IgorFuzz incrementally approaches a minimal execution
trace. To reduce the risk of converging at local minima and to pro-
mote diversification, IgorFuzz retains seeds that meet any of the
two rules. Note that it does not suffice to measure if the new input
executes strictly fewer edges than the original input, as IgorFuzz
may get stuck at a local minimum from which it cannot easily es-
cape. Rule 1 therefore prioritizes a seed that prunes common edges,
but permits it to execute more edges if at least one previous edge is
no longer executed. Rule 2 minimizes hit counts to simplify loops

4203364

4703804

4703833

4703384 4203215

4703406

4702976

4703052

4203237

4203661

4203870

4207334

4519689

4519745

4519856

4467768

4467824

4467836

4520382

4467893

4641616

4641937 4641950 4641963 4641976 4641989

4642355

4301069

4301307

4399734

4351647

4252497

4412441

42224284645258 45062094657664

4429846

4449941

4451631

4435553

4228154

4236050

4234685

4467917

4468330

4470648 4469558

4518825

4470671 45126694432721 44327444436607

4518468

4470795 4413994

4414609

44366564256658

4256669

4297194

4297036

4297519

4242184

4297739

4305015

43244674322551 43948654516832 4516929

4298235

42978564253377

4306733

4311806 4254727

4208558

4208665

4211495

4209453

4209678 4210669

4212101

4212207 4212691

4213008

4213121

4256684 4641553 46419224306888

4257242

4253090

4253179

4257780

4673334

4268510

4264759

42684584259070

4273130 4267564

4522659

4522984

4641505

4299443

4207588

4305489

4306142

4310441

4351858

4354932

4208196 4208297

42083994209726

4210165

421035642104624210611

4207858

4308318

4216632

4216864

4517988

4471615

4519220

4519391

4471819

4304692

4305049

4669586

4323152

4324164

4325144

4321798

4305112

4325679

4504899

4521005

4520912

4520930

4305461 4306822 43459884309098

43548864254842

4256403

4255913

4255483

4305469 4436716

4306369

4297465

4641863

4672404

4307144

4307288

4306807

4325797

4334891

43260634334165

4338935

4328953

4310000

4331803

4352982

4334475 43126234333305

4335530

4671052

4308257

4301014

4301236

4306838

4396570

4394060

4394694

4338376

4397112 4410323

43459294339538

4351703

4351807

4258660

42635714264483

4263626

4252374

4252421

4309284

4310269

4376540

4371754

4329012

4403354

4408691

4379883

4409665

4312729 4314882

4314280

4314962

4315174

4320155

4497400

4495649

4495670

4320234 4494606

4222372

4505310 43203594234616

4497056

4494587

4208095

4508830

4254514

4254587

4209404

4672937

4670601

4276098

4208147

4208248

4208350

4208616

4208685

4210520

4218222

4213262

4213282

4213290

4214092

4213618

4236090

4236110

42375314235206

4213555

4209935

4209989

4234730

4250018

4242476

4218332

42098484219494

4218460 4218172 4218619 4219168 4219005 42196724218846

4213331

42134124213934

4214115

4215292

4222361 4220748 4220188

4230170

4222522

4473264

4473714

4478737

4479197

4480502

4480623

4483363

4674035

4644806

4644850

4644897

4645156

4645363

4674079

44837124490634

4645948

44753434484865

4646469

4646524

4475412

4222586

4505176

4507185

4507557

4516370

4516801

4516953

4507718

4508661

4466286

4506664

4674995

4657432

4657480

4657526

4657572

4657767

4675039

4506907

4658268

4506137

4506161

4668869

4222692

4215395

4413841

4413943

4658580

4658682

4517435

4512294

4414199

4414669

4448637

4415369

44154654449644

4415853

4450242

4416050

4416347

4416958

4417159

4451396 4429678

4459032

4449951 4451641 4435010

4462021

4462699

4426494

4435293

4436371

4436534

4436546

4250658

4436700

4255999

4256150

4256337

4669654

4669722

4669797

4669872

4669947

4670022

46701304670152

4670220

4670264

4436726

4256552

4297123

4297080

4297088

4501486

4501595

4501684

44001244465411

4521205

4521129

4503584

4502693

4501850

4502712

42358244501944

423599242346034213434

4227976

4497704

4497479

4497620 4497542

42280744235813

4235802

4234592

4502264

4236070

4483831

4483891

4483944

4483965

4484138

4484802

4486238

4486981

4487882

4488054

4489987

4234705

4234629

4210010

Figure 2: Function-call graph of tiffcp. This figure shows
the nodes and edges removed (highlighted in red) or added
(highlighted in green) by IgorFuzz.

and recursive function calls. Together these rules drive coverage
downwards, one removing edges (but potentially adding new ones),
the other reducing edge counts. Note that at any point in time,
multiple seeds are being scheduled for mutation depending on the
seed selection principles below.

3.2.2 Seed Selection Principles. To achieve a higher efficiency at
exploring the coverage space of a target, AFL [83] marks the seeds
which exercise disjunct sets of edges as favorites. By finding a
minimal set over the sets of edges executed by each seed (e.g.,
as performed by Karp [40]), AFL determines the seeds which are
more likely to increase coverage in different directions of the code
and more favourably mutates those seeds. Previous research on
seed selection [35] also validates this strategy: the fewer and more
distinct the seeds are, the better the fuzzer is able to maximize
coverage.

In contrast to AFL’s approach, IgorFuzz attempts to minimize
coverage by favoring seeds which trim disjunct sets of edges. New
seeds that trim groups of edges are more likely to prune those edges
from the execution trace upon further mutation. For that reason,
we mark such seeds as favorites and assign them higher energy.

3.2.3 Seed Energy Scheduling. Seed energy determines how many
times a seed will be fuzzed after it is selected. Higher seed energy
results in more mutations and executions. By mutating seeds with
a smaller number of recorded edges, IgorFuzz can process inputs
faster and is more likely to discover even simpler PoCs. We use a
greedy heuristic to allocate more energy to seeds with a shorter
execution length.

We also dynamically allocate energy to different seeds based on
their coverage profile. We assign more energy to seeds with shorter
execution paths. Not only do we assign more energy to simpler
seeds, but we also ensure that the assigned energy is biased towards
larger reductions in coverage.



3.2.4 Fuzzing Output Selection Criteria. To explore different code
regions, fuzzing typically employs a meta-heuristic optimization
over the target’s coverage space. During the search process, fuzzing
naturally encounters solutions that diverge from the original ob-
jective. In the context of IgorFuzz, that objective is finding the
simplest PoC that triggers the same initial bug. With the help of
BitmapSize—which AFL++ [27] uses to show how many unique
edges were activated—we pick the simplest PoC by finding the PoC
whose bitmap size is the smallest. Despite limiting search to the
vicinity of the original execution trace, it is inevitable that other
bugs are triggered. To filter out those erroneous solutions, we rely
on crash sites as the penultimate selection criterion, and among
the remaining seeds, we select the PoC with the smallest bitmap
size. According to our evaluation, IgorFuzz has a low probability
of discovering crashes caused by a different bug (Section 5.5).

3.3 Test Case Similarity Measurement
Existing approaches for measuring test case similarity leverage
information available at the crash site (e.g., the call stack, instruc-
tion pointer, register contents). A fundamental limitation of these
approaches is that a bug may cause the program to crash in many
different locations, resulting in an over-approximation of the unique
bug count. Backward slicing may alleviate this problem by tracing
the flow of the crashing condition to its origin. Unfortunately, back-
ward slicing does not apply to all types of vulnerabilities (e.g., in a
use-after-free vulnerability, the location where data is reused can
be independent from where it is freed). Moreover, scaling backward
slicing to large and complex program traces across 100,000 basic
blocks is an unsolved problem. Studying the limitations of current
approaches led us to the following insight: all crashes that are due
to the same bugmust have a (partially) overlapping execution trace.
Furthermore, methods for analyzing the topological structure of
the execution trace can be used to extract a signal for crashes of
the same bug.

The program execution trace is a sampled sequence of program
addresses sorted by their execution order. To calculate their simi-
larity, existing approaches leverage Levenshtein Distance [82] and
Longest Common Subsequences [36]. Unfortunately, program loops
increase the difference between execution traces, limiting the util-
ity of these techniques. Even if these execution traces come from
crashes of the same root cause, their sequence similarity is low.
However, collapsing the execution trace onto a graph means that
control-flow similarity is no longer affected by different loop itera-
tion counts. Thus, our approach uses graph topology to calculate
similarity between traces.

3.3.1 Control-flow Graphs (CFG). Control-flow graphs describe
the execution process of a program. A node in a CFG represents a
program address, and edges connect two successive addresses. To
construct the CFG, we sample the execution trace at a predefined
granularity. On one end of the spectrum, fine-grain instruction-
level traces introduce redundant nodes into the CFG, since edges
between consecutive instructions are implicitly captured by the
sequential nature of program execution. Additionally, recording
instruction-level traces imposes scalability challenges, rendering
the approach intractable. On the other end of the spectrum, function
traces are easily collected, but they are coarse-grained and can

overlook key behaviors in the program that capture the bug context.
Basic block-level granularity provides a balance between precision
and scalability, and we use it to construct the CFGs for similarity
matching.

Execution traces contain noise that must be filtered. There are
two types of noise: (i) code executed in external shared libraries
(e.g., glibc); and (ii) superfluous code after the program’s crashing
point (e.g., ASan’s crash handler). Since we focus on a specific target
program, the execution trace of external code is unnecessary. Thus,
we filter any addresses that are outside our target code. Sanitizers
detect bugs early by introducing additional software guards. When
a bug is detected, the sanitizer executes additional code to collect
and report information. This information collection and reporting
adds unnecessary noise and is filtered as well. We discuss how we
filter these two types of noise (during the execution and after the
bug trigger) in Section 4.

3.3.2 Calculating Graph Similarity. After recording traces, we con-
struct a CFG for calculating graph similarity. Efficient graph simi-
larity estimation has been studied extensively [44], and the results
show that kernel methods are most suitable for estimating graph
structure similarity. At present, most kernel methods for graph sim-
ilarity estimation include two types: graph embedding and graph
kernel. The former leverages traditional vector-wise kernel algo-
rithms based on dimensional reduction of input graphs, which leads
to a loss of structural information. The latter directly performs ker-
nel algorithms in a high-dimensional Hilbert space, so that the
structural information of graphs remains intact.

After surveying different graph kernels (e.g., labelled graphs,
weighted graphs, or directed graphs), we found that the Weisfeiler-
Lehman Subtree Kernel algorithm demonstrated the highest ability
to differentiate test cases of varying root causes while assigning
high similarity measurements to test cases of the same root cause.
Thus, we adopt the Weisfeiler-Lehman Subtree Kernel to estimate
the similarity between CFGs. The Weisfeiler-Lehman Subtree Ker-
nel algorithm requires the nodes of a graph to be labelled. We use
the basic block addresses (from the execution trace) as node labels.

3.4 Bug Clustering
Fuzzers are highly non-deterministic in how they discover bugs
and paths through the target program. The fuzzer may discover
one or more crashes for a bug, but it is not known a priori how
many crashes it will find. Consequently, Igor cannot know how
many bugs are discovered during a fuzzing campaign. For example,
a given set of 100 crashes may map to 100 bugs with one crash
each, one bug with 100 crashes, or anything in between. The key
challenges for clustering are to (a) discover the exact number of bugs,
and (b) assign crashes to the correct bug. As stated above, the number
of expected clusters is not known and must be inferred during
clustering. Our approach determines the number of clusters by
running the clustering process multiple times, refining the assumed
number of bugs based on a heuristic (see Section 3.4.2).

3.4.1 Data Characteristics. The Weisfeiler-Lehman Subtree Kernel
algorithm produces a similarity matrixMs; letMd = 1 −Ms, where
Md is the corresponding distance matrix. We build our clustering
algorithm on the two matrices.



Figure 3: Distribution of samples for x509. The suffixes ‘a’
and ‘b’ indicate two call stacks for one CVE.

The matrices Ms and Md are not sufficient to determine the
distribution of samples. Multi-dimensional Scaling (MDS) [10] is an
algorithm for dimensionality reduction. It projects high dimensional
data to a lower dimensional space by finding abstract Cartesian
coordinates in the lower dimensional space that keeps the distance
between samples almost unchanged. We leverage MDS to visualize
the distribution of samples in a two-dimensional plane.

We analyze distributions based on these visualizations. For ex-
ample, Fig. 3 shows how samples of x509 are distributed across the
Cartesian plane. The shapes of clusters are not spherical, indicating
that 𝑘-means-like methods are not suitable, and we therefore rely
on alternative methods to recognize clusters of arbitrary shapes.

Igor leverages the silhouette score [63] to describe the quality of
cluster structures. By simplifying test cases, the samples tend to
have better cluster structure, see Fig. 7.

3.4.2 Clustering Algorithm. DBSCAN [26] is a density-based clus-
tering algorithm that uses a similarity/distance matrix. The DB-
SCAN algorithm takes two parameters, 𝜖 and𝑀𝑖𝑛𝑃𝑡𝑠 , that define
the density threshold. The primary challenge is how to determine
these parameters. Although heuristics exist [65, 67], changes in
the density distribution of samples result in a failure of the clus-
tering process. Alternative algorithms like OPTICS [3] and HDB-
SCAN* [12] perform hierarchical analysis to obtain better results.
However, they still require predefined density descriptive parame-
ters, which are must be tuned when analyzing new programs (be-
cause the samples’ density distribution varies between programs).

We found that the Spectral Clustering [74] algorithm addresses
the parameter-tuning challenges brought on by the high-dimensional
information stored in the Weisfeiler-Lehman Subtree Kernel simi-
larity matrices. Spectral Clustering takes only one parameter: the
number of clusters. Given the number of clusters and a similarity
matrix, Spectral Clustering builds a graph Laplacian on the basis
of the similarity matrix. Eigenvectors of the graph Laplacian are
calculated to realize dimensionality reduction. Then, the algorithm
automatically groups samples into the designated number of clus-
ters in a lower dimensional space.

Since the real number of clusters is unknown, we need a metric
for evaluating the clustering result. For this purpose, we again use
the silhouette score. Liu et al. [49] describe different clustering
validation measures. In their study, they indicate that the optimal
cluster number can be determined by maximizing the value of the
silhouette score.

As the silhouette score is undefined when there is only one clus-
ter, we assume that there are at least two clusters among the dataset.
Then we enumerate the number of clusters to run the clustering
process, and calculate the silhouette score of the result. Afterwards,
we select the clustering result with the highest silhouette score.
However, this approach may undercount the number of clusters.
We therefore develop a heuristic to decide if we need to repeat
clustering based on the number of full-length crash call stacks: for
less than 20 call stacks, running the clustering process once suffices,
while for more than 20 call stacks, we cluster twice. Tables 1 and 7
show our experimental results based on this heuristic.

3.4.3 Misclustering for single-bugs. The presence of tightly inter-
spersed sub-clusters indicates that there is likely only one cluster.
The minimum number of detectable clusters is two. If there is only
one, then the number of clusters is raised artificially during enu-
meration to find a higher silhouette score. It is rare in practice
for a fuzzing campaign to find hundreds of test cases for only one
vulnerability. After thousands of CPU hours of fuzzing, we have
never observed this case. In this case, using current crash grouping
methods—e.g., stack bucketing—is sufficient.

To mitigate against this rare situation, Igor compares its cluster
result with a call-stack based approach (e.g., afl-collect). If Igor
reports more clusters than afl-collect, we indicate to the analyst
that they should refer to the afl-collect results.

4 IMPLEMENTATION
Our prototype of Igor demonstrates the practical feasibility of our
approach. We briefly explain important implementation details
in the following sections. Complete source code is available at
https://github.com/HexHive/Igor. We implement IgorFuzz on top
of AFL++, record execution traces using Intel Pin, and develop sev-
eral Python scripts that orchestrate gdb to select and filter execution
traces. We construct CFGs from traces using NetworkX [32], visu-
alize them with Graphviz [25], and calculate graph similarity using
GraKeL [69]. The clustering phase leverages scikit-learn [58].
Our implementation consists of approximately 1,000 lines of C++
code and 2,500 lines of Python code, along with several small scripts.

Recording Execution Traces and Noise Filtering. We developed
smart-tracer, a trace recorder based on Intel Pin that records
execution traces at function call-, basic block-, and instruction-level
granularity. During post-processing, we filter out function calls
(a) into auxiliary code (e.g., calls into libc), and (b) that occur after
the crash is triggered (e.g., sanitizer information collection).

CFG Similarity Metric. The filtered traces are first used to con-
struct the CFG. Then, we use this CFG to calculate graph similarity
using the Weisfeiler-Lehman Subtree Kernel algorithm.

Clustering. The clustering procedure runs up to fifteen times
by default, enumerating the number of clusters from 2 to 16, and
(re)calculating the silhouette score each time. This process outputs
the clustering result with the highest silhouette score. Finally, a
post-clustering scatter diagram is created to help analysts visually
assess the quality of the clustering result.

https://github.com/HexHive/Igor


5 EXPERIMENTAL EVALUATION
We evaluate Igor on 12 servers running Ubuntu 18.04 LTS, each
with 200GiB of RAM and an Intel(R) Xeon(R) Gold 6254 CPU @
3.10GHz with 40 cores. We source our benchmark dataset from
58.7 CPU-years of fuzzing campaigns. The Igor-specific evaluation
took 6,143.7 CPU-hours and 30 human-days across all presented ex-
periments. The IgorFuzz evaluation took 5,531 CPU-hours. Impor-
tantly, this is not necessarily indicative of the actual time required
for minimization: we run IgorFuzz one hour for each sampled
PoC (5,531 CPU-hours in total) to show the changes over time.
In practice, we would let IgorFuzz run for 15min per PoC (we
demonstrate this in Section 5.4.1); thus minimizing all 5,531 PoCs
requires 1,382.75 CPU-hours. Compared to the total cost of fuzzing,
minimization is negligible and consumes less than 0.3 % of the
length of a fuzzing campaign.

5.1 Benchmarks
We evaluate Igor on the Magma benchmark [33] and MoonLight
dataset [34, 35]. These benchmarks contain 52 CVEs that belong
to 14 target programs, containing more than 254,000 crashing PoCs
that map to 39 unique bugs. We exclude four programs contain-
ing only a single CVE: pdftotext (Poppler), exif (PHP), client
(OpenSSL), and libxml2_xml_read _memory_fuzzer (LibXML). As
discussed in Section 3.4.3, Igor falls back to afl-collect in this
case (we still report these results in Table 5). Additionally, we ex-
clude (a) two CVEs that result in prohibitively large trace files
(over 10GiB per PoC), and (b) six CVEs that are duplicates, seman-
tically equivalent, or partial fixes to one of the 39 unique bugs (see
Section 6.3 for details). We augment these benchmarks with precise
ground-truth data that verifies the root cause for each PoC.

Following the methodology outlined by Klees et al. [43] and
Hazimeh et al. [33], we map crashes to bugs through the patches
that fix the crash (when applied). Importantly, both the Magma
and MoonLight datasets contain targets with multiple bugs. Un-
fortunately, multiple bugs (in a single target) may interfere with
each other (e.g., a bug may mask/enable other bugs that would not
manifest in a normal program execution). To minimize the risk of
interference, we relabel our initial PoC dataset according to the
patches that disable the crash. We show this process in Fig. 4.

Figure 4: Tagging PoCs by applying patches.

Starting with an unpatched version of the target, we apply
patches one at a time, each time processing the entire PoC cor-
pus to flag changes in crash status. If a change is detected, that
patch is considered a ground-truth label for the PoC, and is used
for measuring the performance of our clustering method. We man-
ually verified the completeness of patches in fixing the root cause
of a crash. For each crash in our benchmark, we label root cause
and call-stack hash. Our ground-truth data allows us to determine
whether crashes are grouped correctly (i.e, if they correspond to
specific CVEs).

5.2 Summary of Results
Table 1 shows the results of Igor’s clustering evaluation with differ-
ent IgorFuzz cut-off times. Cut-off time refers to the time we allow
IgorFuzz to minimize a single PoC. Here we only report 15min
and 30min cut-off times (due to space constraints) and provide
results for the other cut-off times in Table 7 in Appendix D.

For Igor, we report clustering results for basic-block-level traces.
We also evaluate Igor’s clustering results at function-call (cheap
and least precise) and instruction level (expensive and most precise)
granularity. While the results are similar across the three tracing
granularity, we see a correlation between better results and bugs
with a larger number of crash sites. Specifically, our results indicate
that Igor should switch to instruction-level tracing when the num-
ber of crash sites exceeds ∼ 20 (e.g., for xmllint and char2svg).

While grouping crashes based on stack hashes is common prac-
tice, different tools use different stack depths. For example, afl-
collect hashes all stack frames, honggfuzz leverages the last seven
stack frames, and CERT BFF [38] uses the last five frames. We com-
pare Igor against these three configurations and a baseline of a
single stack frame (called “Top Frame” in Table 1). To measure
classification quality, we calculate precision, recall, purity [2, 70],
inverse purity [2] and F-measure [47, 70]. These metrics are all
standard approaches from the machine learning community.

Our results show that—compared to Top Frame, BFF-5, hongg-
fuzz, and afl-collect—Igor achieves the highest F-measure in 90 %
of our experiments (and is 20 % off in the remaining 10 %) and
achieves higher purity and inverse purity scores in most cases.
From a quick glance at Table 1, it may appear that crash sites are
the best grouping method, but crash sites are often not unique
because different bugs crash at the same program location (see the
unique bug addresses in the crash address column in Table 5).

We also assess the loss of precision caused by our bug count
inference process (which may be inaccurate in itself). We rerun
the clustering process with ground-truth bug count, and compare
these counts to the results of clustering that relies on an inferred
bug count. Table 7 (in Appendix D) shows that Igor’s results are as
accurate as the ground-truth bug counts.

5.3 Test Case Reduction
We evaluate IgorFuzz (over all 39 bugs) to demonstrate its ability
to remove redundant paths traversed by each PoC. For each bug we
use afl-cmin to select representative PoCs from our corpus and
run IgorFuzz for 15min. Per Section 5.4.1, we found that 15min is
sufficient for each minimization. Fig. 5 shows the mean edge count
(i.e., the fuzzer’s bitmap size) executed by the newly-minimized



Table 1: Evaluation results. ASan rep(s), HO, SO, FP and HU represent Heap buffer Overflow, Stack buffer Overflow, Floating-Point
exception and Heap Use-after-free (according to Address Sanitizer reports), respectively. The # of samp. represents the number
of samples in one experiment; C. Igor is the number of clusters Igor outputs; and Top Frame, BFF-5, honggfuzz, and afl-collect
show crash grouping scores obtained by comparing call stacks of length 1, 5, 7, and full-length. P, IP and F are abbreviations
of Purity, Inverse Purity, and F-measure, respectively. Finally, cut-off time represents the running time we limit IgorFuzz’s
minimization for a single PoC. The best performing entries are highlighted.

Program # bugs ASan rep(s) # samp. # crash # call C. Igor Top Frame (%) BFF-5 (%) honggfuzz (%) afl-collect (%) cut-off time Igor (%)
addr/uniq stack P IP F P IP F P IP F P IP F (minutes) P IP F

pdfimages 3 HO, SO 410 12 23 3 48 63 47 62 47 62 47 62 15 100 100 100
3 100 100 100 100 30 99 99 99

pdftoppm 3 HO, FP 161 5 2 95 98 95 98 95 98 15 69 100 803 2 100 100 100 100 100 100 30 70 100 80

tiffcp 5 HO 991 6/3 20 6 85 89 80 88 76 74 88 67 68 88 67 68 15 100 98 99
6 30 100 99 99

tiff2pdf 3 HO, HU 385 3/2 8 3 92 91 89 89 93 89 94 89 94 15 98 98 98
3 99 99 99 30 98 98 98

x509 2 HO 150 3 2 75 83 75 83 15 100 100 1002 2 100 100 100 100 100 100 100 100 30 100 100 100

libpng_read_fuzzer 2 FP 150 3 2 72 81 72 81 72 81 72 81 15 100 100 1002 2 100 100 100 100 30 100 100 100

xmllint 8 HO, SO, HU 1581 25/14 901 14 78 59 64 78 55 62 78 55 62 79 3 4 15 96 67 77
18 30 97 66 77

char2svg 5 HO, SO, HU 1087 21/20 67 8 66 72 14 20 14 20 14 20 15 100 67 79
8 100 100 100 100 30 100 67 79

sox (MP3) 4 HO, SO 260 8 4 63 74 58 71 58 71 58 71 15 100 100 1006 4 100 100 100 100 30 100 100 100

sox (WAV) 4 HO, SO, FP 356 6 8 4 67 77 66 76 66 76 66 76 15 100 100 100
4 100 100 100 100 30 100 100 100

PoC, while Fig. 11 shows how IgorFuzz reduces traces across three
dimensions (basic block counts, edge counts, and trace length). Due
to space constraints, we limit our results to these figures (the re-
maining results are available at https://github.com/HexHive/Igor).

Fig. 5 shows that the bitmap size monotonically decreases over
time. We found that the length of the reduction process is pro-
portional to the length of the program trace executed by the PoC.
Larger bitmaps provide more opportunities for shrinkage, as evi-
dent from the topmost plots in Fig. 5. The larger the bitmap size of
the initial PoC, the slower the compression process.

The mean values in Fig. 5 ignore outliers. Fig. 6 highlights how
Igor reduces outliers for CVE-2016-5314. Fig. 6 shows that the
interquartile range drops significantly after IgorFuzz’s trace re-
duction. Furthermore, the outliers’ bitmap size gradually converges
to the mean, and the number of outliers continues to decrease over
time (until they disappear completely).

5.4 Graph Similarity After Minimization
We cluster and compare the original and reduced PoCs to assess
whether IgorFuzz improves similarity analysis. This involves record-
ing execution traces of the target program and calculating similarity
based on the CFGs constructed from these traces.

Our results (across our ten target programs) demonstrate that
coverage-reduction fuzzing makes PoCs more distinguishable. For
example, Fig. 7 shows the distribution of CFGs before and after
performing coverage-reduction fuzzing on tiffcp. The cluster con-
tains four vulnerabilities. Per Fig. 7(a), because the bug-irrelevant
paths have not been pruned, the test cases of different vulnerabil-
ities are not distinguishable; they are combined with each other,
resulting in nine clusters and a surplus of five misclassified bugs.

Figure 5: Bitmap size (number of edges) trend over time.

Clustering precision greatly improves after using IgorFuzz to
shrink PoCs. Per Fig. 7(b), clustering shrunken PoCs leads to an
accurate grouping of the 842 test cases into four clusters (based
on their root causes). Table 2 shows the change in silhouette score
before and after reduction.

Data distribution affects the results of the cluster [67]. Unfor-
tunately, this distribution of data cannot be predicted in many
real-world scenarios. We study Igor’s ability to process different
data distributions, and our results show Igor achieves ideal results
under different data distributions (see Appendix A).

5.4.1 Suitable Cut-off Time. The time/cost tradeoff is an important
factor for determining the practicality of Igor. Given more time,

https://github.com/HexHive/Igor


Figure 6: Boxplot of bitmap size for CVE-2016-5314.

IgorFuzz can generate more concise PoCs, and our results show
that pruning more bug-irrelevant paths leads to more accurate
clustering results. Our results also show that each time Igor’s run-
ning time is doubled, we achieve a higher (mean) silhouette score
(indicating more bug-irrelevant paths are pruned). But improving
silhouette scores results in diminishing returns (considering perfor-
mance of the second stage). After reaching a threshold, the cluster
structure is highly identifiable and clustering results no longer
improve.

According to our silhouette scores (Table 2), IgorFuzz increases
the average silhouette score by 14.4 % during the first 15min (the 0min
column corresponds to the time before any reduction has occurred).
The next two intervals increase the average silhouette score by
only 1.8 % and 0.5 %, respectively. This yields minimal benefits for
clustering. We use the minimized PoCs generated by these three
cut-off times for clustering (see Tables 1 and 7). These results show
that although longer times will give us more precise results, it is suf-
ficient to run IgorFuzz with 15min. Therefore, we suggest 15min
as the default cut-off time.

Table 2: Silhouette scores.
Program 0 min (%) 15 min (%) 30 min (%) 60 min (%)

pdfimages 52.9 70.2 70.0 69.4
pdftoppm 59.0 80.2 80.0 79.0
tiffcp 33.2 70.2 73.9 77.4
tiff2pdf 66.0 70.6 70.7 71.2
x509 76.9 94.1 94.3 94.6
libpng_read_fuzzer 68.5 96.6 96.6 97.7
xmllint 38.3 49.1 55.3 54.7
char2svg 44.5 53.7 53.8 54.0
sox (MP3) 78.1 74.6 81.1 81.3
sox (WAV) 83.1 85.0 86.6 88.0

Average 60.0 74.4 76.2 76.7

5.5 Verifying Minimization Results
Here we answer a key minimization question: does a minimized
PoC trigger the same bug as the original PoC? We label a result a
false positive if the minimization process discovers a new bug with
a different root cause and this root cause replaces the original test
case. We verify minimization results via the process described in
Section 5.1 (i.e., by successively applying patches).

(a) Original distribution.

(b) Distribution after reduction.

Figure 7: Data distribution before and after reduction.

We designed two experiments from two perspectives. First, we
verify whether a minimized PoC introduces an error. We recorded
zero false positives out of our 5,535 minimized PoCs. Secondly, we
checked whether errors (i.e., PoCs triggering a new bug) were gen-
erated during fuzzing. If there are many error seeds in the queue,
IgorFuzz may be misled by these error seeds, and generate more
error seeds during the fuzzing process. The number of queues con-
taining error seeds (namely, “error queues”) is shown in Fig. 8. This
figure shows the number of error queues among all the queues
of their corresponding programs. Only 2.10 % of all 5,531 queues
contain errors. This shows that IgorFuzz has a low probability of
introducing errors during the reduction process. Further, we also
studied the proportion of error seeds in the error queues and found,
with the exception of xmllint, this proportion is less than 10 % (see
Appendix D). This means IgorFuzz will not waste time on error
seeds. Although errors appeared during minimization in these pro-
grams, it does not affect the correctness of IgorFuzz’s output (due
to our seed selection principles, detailed in Section 3.2.4). According
to our evaluation results, all errors were filtered out successfully.

6 CASE STUDIES
We now present three case studies that—while challenging for
classic crash grouping techniques—demonstrate the effectiveness
of Igor. These case studies include: (i) assessing the accuracy of
CVEs; (ii) highlighting rare crashes; and (iii) detecting semantically
equivalent bugs.



Figure 8: Queue error rate.

6.1 Assessing CVE Accuracy
Software maintainers manually analyze reported PoCs, assigning
CVEs according to their root cause. However, a recent study [48]
shows that even software developers misjudge root causes when
faced with a large number of PoCs, resulting in imprecise CVEs
where either different vulnerabilities are assigned the same CVE
or different CVEs are assigned to the same vulnerability. Igor’s
benchmark includes both cases.

For CVE-2016-10269 #1 and CVE-2016-10269 #2 (tiffcp), we
sampled 400 PoCs and grouped them according to the root cause.
Igor clusters these PoCs into two distinct groups. After verification,
we discovered that there are indeed two different vulnerabilities. As
the functions executed before the crash are similar, the developer
mistakenly classified these two vulnerabilities into one category.

For CVE-2019-8354 and CVE-2019-8366 (SoX), Igor clusters 57
PoCs into a single group. These two CVEs have different crash
addresses and call stacks, but the developer confirmed that these
two vulnerabilities are indeed caused by the same root cause, the
assigned CVEs are duplicates.3

For CVE-2015-9290 and CVE-2015-9381 (char2svg), we found
that their patches both partially fix the same vulnerability. Igor
correctly clusters the corresponding 41 PoCs into a single group.

These three scenarios demonstrate how Igor successfully high-
lighted the inaccuracy of assigned CVEs (inaccurate CVEs are la-
belled with superscripts in Table 5).

6.2 High-value Needles in Test Case Haystacks
Fuzzers cannot guarantee a similar number of PoCs for each bug.
For bugs that are harder to find (e.g., due to deeper code depth,
or harder trigger conditions), the number of PoCs generated by
the fuzzer is often small. Such rarely-triggered bugs may be lost
because crash grouping may wrongly merge them with other bugs.

Igor ensures that such rare PoCs are correctly analyzed. By first
bucketing PoCs based on the crash address, Igor detects crash loca-
tions with few PoCs and uses AFL’s crash mode to amplify them.
In our current implementation, Igor amplifies the number of PoCs
at crash locations with fewer than ten PoCs to at least 50.

3https://gitlab.alpinelinux.org/alpine/aports/-/issues/10523

As an example, we study CVE-2016-5314 (tiffcp). Consider our
analysis for trial 3 in Table 3. If we instead limit the number of
PoCs for CVE-2016-5314 to three, then this CVE is subsumed by
another CVE. When we amplify the three test cases to 50, the CVE
is successfully separated.

6.3 Detecting Semantically Equivalent Bugs
Our benchmark distinguishes vulnerabilities based on unique patches.
If the patch used to eliminate the failing test case is different, it
is considered to be a different vulnerability. Based on this rule,
we found that Igor’s result misclassifies PoCs for char2svg. The
char2svg PoCs come from eight CVEs with a different patch for
each CVE, indicating that these are eight different bugs (see Table 5).

However, we discovered that Igor groups the PoCs from CVE-
2014-9663, CVE-2014-9669, and CVE-2015-9383 into a single group.
We reviewed the corresponding code and patches in char2svg,
and found that these three CVEs share the same semantic root
cause. Specifically, we found that all three CVEs check whether
FT_INVALID is too short to avoid heap-buffer-overflows and all
three patches are in the same source file. There are six similarly
named functions that validate the input (e.g., tt_cmap4_validate,
tt_cmap8_validate, tt_cmap10_validate). All six functions are
buggy, and share the same root cause. The developer first com-
mitted the patch for CVE-2014-9669, in which five of the six vul-
nerable functions were fixed. The forgotten vulnerable function,
tt_cmap4_validate, was fixed in the patch for CVE-2014-9663
ten days later. However, the patch for CVE-2014-9669 is an incom-
plete fix, because it misses one aspect of FT_INVALID. This went
unnoticed until CVE-2015-9383 was reported, and the patch for
CVE-2015-9383 finally correctly fixes this bug.

We argue that these three CVEs fix the same single bug from a
semantic point of view: the same bug condition is shared among all
three CVEs, and can be described as “as long as FT_INVALID is too
short, it will cause the same variable be over-flowed”. Igor noticed
that the control flow of the three CVE are indeed similar when they
trigger the bug and, thus, Igor grouped them into a single bucket.

7 LIMITATIONS
Using silhouette score to determine the number of clusters is not
guaranteed to distinguish all clusters. Therefore, after the initial
clustering is completed, it is necessary to manually review the
clustering results. If there are still gaps between samples within
the same cluster, it indicates that a second clustering process is
required to obtain more reasonable clusters. Additionally, when
there is only one bug, intra-class differences are regarded as inter-
class differences. The clustering algorithm then may divide the
input samples into a large number of clusters. Igor will invoke
afl-collect to group the crashes when it finds the group number
given by itself is larger than that of afl-collect. In this case, Igor
falls back to the precision of afl-collect.

IgorFuzz requires more computing resources than simple stack
hashing. We argue that the increased precision of Igor is worth the
additional computation cost (less than 0.3 % in our experiments)
due to the large amount of saved developer cost.



8 RELATEDWORK
Crash bucketing builds on a diverse background in fuzzing, test
case reduction, crash grouping, crash deduplication, and fault lo-
calization. We highlight how Igor compares against these areas.

8.1 Test Case Reduction
Afl-tmin [83], a popular test case minimizer, removes as much data
as possible from a seed while keeping the target in a crashing state.
While fast and easy to use, it has limitations: although it can signifi-
cantly reduce the input size, it cannot effectively reduce the number
of edges that the program executes before crashing. Compared to
afl-tmin, our method emphasizes the reduction of the execution
trace instead of input size, which means the vulnerability trigger
becomes more direct after the reduction. MacIver and Donaldson
[53] presented internal reduction by manipulating the behavior of
the generator that produced them. Its input and purpose is different
from ours, as it tries to shrink redundant operation of input and
keep the same behavior, while we want to execute fewer edges
before the program crashes.

8.2 Crash Grouping and Deduplication
Crash grouping reduces the crash analysis cost by leveraging spe-
cific metrics to measure the affinity between test cases, grouping
similar test cases in one group.

Chen et al. [16] calculate edit distances and coverage profiles
between test cases to group them. Both van Tonder et al. [72] and
Pham et al. [60] utilize symbolic execution technique to collect
crash constraints to assist grouping. Molnar et al. [55] introduces
fuzzy stack hashing by collecting multiple crash metrics and then
hashing these information together as a grouping metric. Holmes
and Groce [37] proposes an alternative to crash grouping: if two
failing test cases can be fixed by applying the same mutant, those
two tests are likely related to the same root cause.

CrashLocator [79] discovers faulty functions that do not reside
in the crash stack by expanding the given crash stack based on a
function call graph. Although this method also takes advantage of
static call graphs, it only uses them to recover traces, while our
method uses dynamic call graphs to measure the similarity of PoCs.

ReBucket [21] proposed a method for clustering duplicate crash
reports based on call stack similarity, the problem with this method
is that it only relies on the local information at the time of the
crash, when categorizing vulnerabilities with more number of call
stacks at the time of the crash, it is easy to divide the PoCs that
have same root cause into multiple different groups. Besides, the
inputs of ReBucket are crash reports, but our inputs are PoCs, so the
application scenarios of the two systems are different. SPIRiT [73]
combines various methodologies to compute a specialized test case
distance measurement, and drives a customized hierarchical test
suite clustering algorithm that groups similar test cases together.

The primary difference between our method and the existing
methods for crash grouping is that Igor evaluates the similarity of
executions of a program from a global perspective by utilizing the
simplified execution trace, while the aforementioned ones mainly
focus on local features of programs.

8.3 Fault Localization
The purpose of fault localization is to determine the root cause of
bugs through crashes or core dump files. Statistical methods and
Delta debugging are themain two technical solutions.Aurora [7] is
a representative work of fault location based on statistical methods.
Similar to ours, it uses crash mode to increase the number of test
cases. The difference is that Aurora collects both crash and non-
crash test cases and locates root cause by comparing them. The
risk of this method is that crash mode does not guarantee that the
generated test cases are still caused by the same vulnerability. When
the crash sample is caused by other vulnerabilities, this method will
cause false positive. Xu et al. [80] propose a method for locating
the root cause through data flow analysis, the key of this method is
to recover the data flow from core dumps automatically to provide
richer debugging information and reduce the difficulty of manual
analysis. Zamfir et al. [84] uses execution traces to help developers
locate the root cause. CrashLocator [79] locates faults based on call
stack. REPT [19] uses reverse debug to locate fault. Kim [42] uses
multiple crashes to diagnosis root cause from the perspective of
crash graphs.

9 CONCLUSION
Fuzzing has become ubiquitous and is today’s key driver for bug
discovery. Unfortunately, the number of reported crashes outpaces
developers’ ability to triage and fix bugs. Nonetheless, the number
of crashes is generally an over-approximation of the total number
of bugs, and crash grouping can drastically reduce the burden on
developers. Existing approaches are light-weight but prone to mis-
classification. We argue for trading little computational time to ef-
fectively reduce the number of crashes by two orders of magnitude,
close to the number of real bugs, lightening developer workload.

Our approach, Igor, prunes bug-irrelevant paths and calculates
the shortest bug-triggering path using a novel coverage reduction
fuzzing approach. Crashes are then grouped based on the topologi-
cal similarities between the CFGs of minimized execution traces.

Our evaluation demonstrates that Igor outperforms existing ap-
proaches, resulting in the most precise bug clusters for 90 % of
our evaluated programs. Based on a ground-truth comparison, we
show that Igor groups crashes of various root causes and vulnera-
bility types precisely. The open-source prototype of Igor, IgorFuzz,
and our labelled ground-truth benchmark are available at https:
//github.com/HexHive/Igor.

10 ACKNOWLEDGEMENTS
The authors would like to thank: Adrian Herrera and the anony-
mous reviewers, for their careful feedback along with the oppor-
tunity for a major revision which greatly improved the clarity
of this paper; Ruilin Li and Shuitao Gan, for their helpful feed-
back; Zheyu Jiang and Zhiwei Li, for their valuable support during
the evaluation. This project has received funding from the Euro-
pean Research Council (ERC) under grant agreement No. 850868,
DARPA HR001119S0089-AMP-FP-034, ONR award N00014-18-1-
2674, and National Natural Science Foundation of China under
grant 61772308, 61972224, and U1736209. Any findings are those of
the authors and do not necessarily reflect the views of our sponsors.

https://github.com/HexHive/Igor
https://github.com/HexHive/Igor


REFERENCES
[1] Karan Aggarwal, Finbarr Timbers, Tanner Rutgers, Abram Hindle, Eleni Strou-

lia, and Russell Greiner. 2017. Detecting duplicate bug reports with software
engineering domain knowledge. Journal of Software: Evolution and Process 29, 3
(2017).

[2] Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. 2009. A com-
parison of extrinsic clustering evaluation metrics based on formal constraints.
(2009), 461–486.

[3] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999.
OPTICS: Ordering points to identify the clustering structure. ACM Sigmod record
28, 2 (1999).

[4] Apple. 2010. Diagnosing Issues Using Crash Reports and Device Logs. https:
//developer.apple.com/library/archive/technotes/tn2004/tn2123.html

[5] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In Network and Distributed System Security Symposium (NDSS). The Internet
Society.

[6] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3 (2018).

[7] Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi, Joel Frank,
Simon Wörner, and Thorsten Holz. 2020. AURORA: Statistical Crash Analysis
for Automated Root Cause Explanation. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association.

[8] Marcel Böhme, Valentin JM Manès, and Sang Kil Cha. 2020. Boosting fuzzer
efficiency: An information theoretic perspective. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering.

[9] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing As Markov Chain. In ACM SIGSAC Conference on Com-
puter and Communications Security (CCS). ACM.

[10] Ingwer Borg and Patrick J.F. Groenen. 2005. . Springer-Verlag.
[11] Mark Brodie, Sheng Ma, Leonid Rachevsky, and Jon Champlin. 2005. Automated

problem determination using call-stack matching. Journal of Network and Systems
Management 13, 2 (2005).

[12] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. 2013. Density-based
clustering based on hierarchical density estimates. In Pacific-Asia conference on
knowledge discovery and data mining. Springer.

[13] Brian Chan, Ying Zou, Ahmed E Hassan, and Anand Sinha. 2010. Visualizing
the results of field testing. In 2010 IEEE 18th International Conference on Program
Comprehension. IEEE.

[14] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-
based Fuzzing.. In NDSS.

[15] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE.

[16] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric
Eide, and John Regehr. 2013. Taming Compiler Fuzzers. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM.

[17] Arpit Christi, Matthew Lyle Olson, Mohammad Amin Alipour, and Alex Groce.
2018. Reduce Before You Localize: Delta-Debugging and Spectrum-Based Fault
Localization. In 2018 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW). IEEE Computer Society.

[18] James Clause and Alessandro Orso. 2009. Penumbra: Automatically identifying
failure-relevant inputs using dynamic tainting. In Proceedings of the eighteenth
international symposium on Software testing and analysis. 249–260.

[19] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu
Wang, and Insu Yun. 2018. REPT: Reverse Debugging of Failures in Deployed
Software. In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). USENIX Association.

[20] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratantonio, and Vasileios P
Kemerlis. 2016. Retracer: Triaging crashes by reverse execution from partial
memory dumps. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). IEEE.

[21] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang, and Peter Nobel.
2012. ReBucket: A method for clustering duplicate crash reports based on call
stack similarity. In 2012 34th International Conference on Software Engineering
(ICSE). IEEE Computer Society.

[22] Sanjeev Das, Kedrian James, Jan Werner, Manos Antonakakis, Michalis Poly-
chronakis, and Fabian Monrose. 2020. A Flexible Framework for Expediting Bug
Finding by Leveraging Past (Mis-) Behavior to Discover New Bugs. In Annual
Computer Security Applications Conference. 345–359.

[23] Tejinder Dhaliwal, Foutse Khomh, and Ying Zou. 2011. Classifying field crash
reports for fixing bugs: A case study of Mozilla Firefox. In 2011 27th IEEE Interna-
tional Conference on Software Maintenance (ICSM). IEEE.

[24] William Drozd and Michael D Wagner. 2018. Fuzzergym: A competitive frame-
work for fuzzing and learning. arXiv preprint arXiv:1807.07490 (2018).

[25] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Gordon Woodhull. 2004. Graphviz and Dynagraph — Static and Dynamic Graph
Drawing Tools. In Graph Drawing Software. Springer-Verlag.

[26] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining. AAAI Press.

[27] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association.

[28] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. CollAFL: Path sensitive fuzzing. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE.

[29] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul, Vince
Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen Hunt. 2009.
Debugging in the (Very) Large: Ten Years of Implementation and Experience. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles.
ACM.

[30] google. [n. d.]. clusterFuzz. https://google.github.io/clusterfuzz (accessed
January, 2021).

[31] google. [n. d.]. Syzbot dashboard. https://syzkaller.appspot.com (accessed
January, 2021).

[32] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring network
structure, dynamics, and function using networkx. In In Proceedings of the 7th
Python in Science Conference.

[33] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Proc. ACM Meas. Anal. Comput. Syst. 4, 3 (2020).

[34] Adrian Herrera, Hendra Gunadi, Liam Hayes, Shane Magrath, Felix Friedlander,
Maggi Sebastian, Michael Norrish, and Antony L. Hosking. 2020. Corpus Distil-
lation for Effective Fuzzing: A Comparative Evaluation. (2020). arXiv:1905.13055

[35] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias
Payer, and Antony L. Hosking. 2021. Seed Selection for Successful Fuzzing.
In Proceedings of the 30th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (Virtual, Denmark) (ISSTA). ACM, 230–243. https:
//doi.org/10.1145/3460319.3464795

[36] Daniel S Hirschberg. 1977. Algorithms for the longest common subsequence
problem. Journal of the ACM (JACM) 24, 4 (1977).

[37] Josie Holmes and Alex Groce. 2020. Using mutants to help developers distinguish
and debug (compiler) faults. Software Testing, Verification and Reliability 30, 2
(2020).

[38] Allen D Householder and Jonathan M Foote. 2012. Probability-based parameter
selection for black-box fuzz testing. Technical Report. CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST.

[39] Hyeon-Gu Jeon, Seong-Kyun Mok, and Eun-Sun Cho. 2017. Automated crash
filtering using interprocedural static analysis for binary codes. In 2017 IEEE 41st
Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. IEEE.

[40] Richard M. Karp. 1972. Reducibility among Combinatorial Problems. In Com-
plexity of Computer Computations. Springer.

[41] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George
Candea. 2015. Failure sketching: A technique for automated root cause diagnosis
of in-production failures. In Proceedings of the 25th Symposium on Operating
Systems Principles.

[42] Sunghun Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2011. Crash
graphs: An aggregated view of multiple crashes to improve crash triage. In 2011
IEEE/IFIP 41st International Conference on Dependable Systems Networks (DSN).
IEEE Computer Society.

[43] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS). ACM.

[44] Danai Koutra, Ankur Parikh, Aaditya Ramdas, and Jing Xiang. 2011. Algorithms
for graph similarity and subgraph matching. In Proc. Ecol. Inference Conf, Vol. 17.

[45] Nils M. Kriege, Pierre-Louis Giscard, and Richard C. Wilson. 2017. On Valid
Optimal Assignment Kernels and Applications to Graph Classification. (2017).
arXiv:1606.01141

[46] Joseph B Kruskal. 1983. An overview of sequence comparison: Time warps, string
edits, and macromolecules. SIAM review 25, 2 (1983).

[47] Bjornar Larsen and Chinatsu Aone. 1999. Fast and effective text mining us-
ing linear-time document clustering. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining.

[48] Bingchang Liu, Guozhu Meng, Wei Zou, Qi Gong, Feng Li, Min Lin, Dandan Sun,
Wei Huo, and Chao Zhang. 2020. A large-scale empirical study on vulnerability
distribution within projects and the lessons learned. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). 1547–1559.

[49] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. 2010. Under-
standing of Internal Clustering Validation Measures. In International Conference
on Data Mining. IEEE Computer Society.

https://developer.apple.com/library/archive/technotes/tn2004/tn2123.html
https://developer.apple.com/library/archive/technotes/tn2004/tn2123.html
https://google.github.io/clusterfuzz
https://syzkaller.appspot.com
https://arxiv.org/abs/1905.13055
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1145/3460319.3464795
https://arxiv.org/abs/1606.01141


[50] V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities
in Java Applications with Static Analysis. In Proceedings of the 14th Conference
on USENIX Security Symposium, Vol. 14. USENIX Association.

[51] LLVM Developers. 2019. libFuzzer: A Library for Coverage-guided Fuzz Testing.
https://llvm.org/docs/LibFuzzer.html

[52] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005).

[53] David R. MacIver and Alastair F. Donaldson. 2020. Test-Case Reduction via Test-
Case Generation: Insights from the Hypothesis Reducer (Tool Insights Paper). In
34th European Conference on Object-Oriented Programming (ECOOP 2020). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

[54] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.
In Proceedings of the 28th International Conference on Software Engineering. ACM.

[55] DavidMolnar, Xue Cong Li, and David A.Wagner. 2009. Dynamic Test Generation
to Find Integer Bugs in X86 Binary Linux Programs. In Proceedings of the 18th
Conference on USENIX Security Symposium. USENIX Association.

[56] Mozilla. 2012. Crash Reports. http://crash-stats.mozilla.com
[57] Pradeep Padala. 2002. Playing with ptrace, Part I. Linux Journal 2002, 103 (2002).
[58] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011).

[59] Hui Peng and Mathias Payer. 2020. USBFuzz: A Framework for Fuzzing {USB}
Drivers by Device Emulation. In 29th {USENIX} Security Symposium ({USENIX}
Security 20).

[60] Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, and Abhik Roychoudhury.
2017. Bucketing Failing Tests via Symbolic Analysis. In Proceedings of the 20th
International Conference on Fundamental Approaches to Software Engineering,
Vol. 10202. Springer-Verlag.

[61] Ivan Pustogarov, Thomas Ristenpart, and Vitaly Shmatikov. 2017. Using program
analysis to synthesize sensor spoofing attacks. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security.

[62] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing.. In
NDSS, Vol. 17.

[63] Peter J. Rousseeuw. 1987. Silhouettes: A Graphical Aid to the Interpretation and
Validation of Cluster Analysis. J. Comput. Appl. Math. 20, 1 (1987).

[64] Korosh Koochekian Sabor, Abdelwahab Hamou-Lhadj, and Alf Larsson. 2017.
Durfex: a feature extraction technique for efficient detection of duplicate bug
reports. In 2017 IEEE international conference on software quality, reliability and
security (QRS). IEEE.

[65] Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. 1998. Density-
based clustering in spatial databases: The algorithm GDBSCAN and its applica-
tions. Data Mining and Knowledge Discovery 2, 2 (1998).

[66] Adrian Schroter, Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. 2010.
Do stack traces help developers fix bugs?. In 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010). IEEE.

[67] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu.
2017. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN.
ACM Transactions on Database Systems 42, 3 (2017).

[68] Kostya Serebryany. 2017. OSS-Fuzz: Google’s continuous fuzzing service for
open source software. (2017).

[69] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Kon-
stantinos Skianis, and Michalis Vazirgiannis. 2020. GraKeL: A Graph Kernel
Library in Python. Journal of Machine Learning Research 21, 54 (2020).

[70] Michael Steinbach, George Karypis, and Vipin Kumar. 2000. A comparison of
document clustering techniques. (2000).

[71] Robert Swiecki. 2016. honggfuzz. http://honggfuzz.com/
[72] Rijnard van Tonder, John Kotheimer, and Claire Le Goues. 2018. Semantic Crash

Bucketing. In Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering. ACM.

[73] Vipindeep Vangala, Jacek Czerwonka, and Phani Talluri. 2009. Test Case Compar-
ison and Clustering Using Program Profiles and Static Execution. In Proceedings
of the 7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering. ACM.

[74] Ulrike von Luxburg. 2007. A Tutorial on Spectral Clustering. (2007).
arXiv:0711.0189

[75] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-driven
seed generation for fuzzing. In 2017 IEEE Symposium on Security and Privacy (SP).
IEEE.

[76] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability detection. In
2010 IEEE Symposium on Security and Privacy. IEEE, 497–512.

[77] Zhiqiang Wang, Yuqing Zhang, and Qixu Liu. 2013. RPFuzzer: A framework for
discovering router protocols vulnerabilities based on fuzzing. KSII Transactions
on Internet and Information Systems (TIIS) 7, 8 (2013).

[78] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.
Scheduling black-box mutational fuzzing. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security.

[79] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. 2014.
CrashLocator: Locating Crashing Faults Based on Crash Stacks. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis. ACM.

[80] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing Mao. 2017.
Postmortem Program Analysis with Hardware-Enhanced Post-Crash Artifacts.
In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association.

[81] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou. 2020.
Ecofuzz: Adaptive energy-saving greybox fuzzing as a variant of the adversarial
multi-armed bandit. In 29th {USENIX} Security Symposium ({USENIX} Security 20).

[82] Li Yujian and Liu Bo. 2007. A normalized Levenshtein distance metric. IEEE
transactions on pattern analysis and machine intelligence 29, 6 (2007).

[83] Michał Zalewski. 2015. American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/
afl

[84] Cristian Zamfir, Baris Kasikci, Johannes Kinder, Edouard Bugnion, and George
Candea. 2013. Automated Debugging for Arbitrarily Long Executions. In 14th
Workshop on Hot Topics in Operating Systems (HotOS XIV). USENIX Association.

[85] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (2002).

A BUG/TEST CASE DISTRIBUTION
CLUSTERING

Clustering precision is impacted by the data distribution [67]. How-
ever, the number of crashes and vulnerabilities is unknown for each
crash grouping task, which means that we cannot guarantee a uni-
form number distribution for crash grouping. Therefore, whether
accurate clustering results can still be obtained under different data
distributions is a key indicator to measure the effectiveness of our
method. Tables 3 and 4 show the clustering results of Igor under
different test case distributions.

Selecting tiffcp as the target program, we alter the number
of test cases of five bugs respectively, the test case distribution in
trial 1 is the same as what it is in Table 1, the distribution in trial 2
is roughly inverse to trial 1, with a decrease in total number, while
in trial 3, the test cases are evenly distributed. Based on trial 3,
we alter the number of bugs. The results show that Igor is stable
against varying test case distributions.

Table 3: Clustering results of tiffcp with different sample
distribution.

Bug # samples
Trial 1 Trial 2 Trial 3

CVE-2016-5314 341 50 100
CVE-2016-10269 #1 251 90 100
CVE-2016-10269 #2 149 200 100
CVE-2015-8784 50 278 100
CVE-2019-7663 200 100 100

Result

Sum 991 718 500
Purity (%) 99.4 99.4 99.6
Inverse Purity (%) 99.4 99.4 99.6
F-measure (%) 99.4 99.4 99.6

B DATA SET STATISTICS
We surveyed our dataset and counted the number of unique crash
addresses and call stacks. These results are presented in Table 5.

https://llvm.org/docs/LibFuzzer.html
http://crash-stats.mozilla.com
http://honggfuzz.com/
https://arxiv.org/abs/0711.0189
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl


Table 4: Clustering results of tiffcp with randomly sampled
bugs. The notation A-E represent the bug ID of the corre-
sponding position in Table 5. The field clusters is the number
of clusters output by Igor, fields P, IP and F are the same as
Table 1.

Trial Bugs Statistics
A B C D E # clusters P (%) IP (%) F (%)

1 ✓ ✓ ✓ ✓ ✓ 5 99.6 99.6 99.6
2 ✓ ✓ ✓ ✓ 4 99.7 99.7 99.7
3 ✓ ✓ ✓ 3 99.3 99.3 99.3
4 ✓ ✓ 2 100 100 100

C IGORFUZZ MITIGATES AFL-TMIN LIMITATION
As a dual-phase crash deduplication technique, Igor requires that
the control flow of each PoC is concise after the first phase, so that
the second phase can get more precise clustering results. Cluster-
ing directly after afl-tmin, i.e., without IgorFuzz results in low
precision as afl-tmin is non-monotonic and provides inadequate
control flow reduction. IgorFuzz mitigates these limitations.

During our evaluation, we found that afl-tmin may increase
a PoC’s bitmap size, e.g., in OpenSSL’s x509 corpus (CVE-2016-
2108). We selected ten seeds with the largest change in bitmap size
being processed by afl-tmin to demonstrate this phenomenon.
As shown in Fig. 9, the bitmap size of the ten PoCs rose in the
first 20 seconds, which corresponds to the reduction process of
afl-tmin. This indicates that as afl-tmin deletes bytes from a
PoC file, the corresponding bitmap size does not always decrease
monotonically. If we pass the afl-tmin-reduced PoCs to the second
phase of Igor, we may worsen results because the control flow of
the PoCs contains additional bug-irrelevant paths.

However, IgorFuzz mitigates this limitation. The blue line in
the same figure shows mean bitmap size of the ten PoCs during
reduction. Taking the afl-tmin-reduced PoCs as input, IgorFuzz
reduced the bitmap size monotonically, and all of the ten PoCs
finally got smaller bitmap size than their original size.

Figure 9: Afl-tmin’s side effect and Igor’s ability to mitigate
against it. The colored dots show individual test cases, the
blue line indicates mean bitmap size and light blue the error
band.

In summary, afl-tmin sometimes increases the bitmap size,
which contradicts the requirement of Igor’s first phase. IgorFuzz
mitigates this issue by focusing on bitmap size reduction rather than
input size reduction, making it more practical to do classification.

D IGORFUZZ DOES NOTWASTE TIME ON
ERROR SEEDS

To study the minimization process of error introducing PoCs, we
explicitly selected all the queues generated during the minimization
process of the error PoCs, analyzing the change in the proportion
of the error seed in all seeds over time. According to the evaluation
result shown in Fig. 10, the proportion of error seeds is small, which
accounts for less than 10 % in three programs, and the lowest is
tiffcp, which is only 0.93 %. Except for xmllint, the proportion of
erroneous seeds decreases over time, which means the effect of
error seed on minimization is ever decreasing and minimization
mainly explores the paths near the original vulnerability.

Figure 10: Seed error rate. In this figure, the bars in faded col-
ors indicate total number of generated seeds in error queues
(including normal seeds and error seeds); the bars in dark
colors are total number of error seeds in error queues.

Error seeds occupy a significant proportion in the queue of xm-
llint, but the proportion decreases over time. We analyzed the rea-
sons for the relatively high error seed in the queue of xmllint: The
length of the PoCs from xmllint is much shorter than the length of
PoCs of other programs, and the code depth of the vulnerability is
relatively shallow. The short seed length combined with shallow
bugs makes it likely for a fuzzer to discover alternate bugs through
only small mutations.

Still, error seeds occupy a relatively small proportion in the
queues overall and individually, which means that they have a small
probability of being further mutated. After manual debugging, we
found that the crash addresses of these error seeds are all different
from those of the original PoCs. Therefore, even if a small part
of the error seed is generated during the minimization, all these
errors will be eliminated by our selection criteria (see details in
Section 3.2.4).



Table 5: Statistics of unique crash addresses and unique call stacks.When the crash address count is given as 𝑛/𝑚, 𝑛 is the number
of crash addresses, while𝑚 is the number of non-unique crash addresses. The bug IDs of a specific program with superscript ∗

or + share the same underlying vulnerability. There are two unique underlying bugs assigned the same CVE—CVE-2016-10269.
We use #1 and #2 to distinguish them.

Target Program Bug ID Crash address count Call stack count

Poppler

pdftoppm
CVE-2017-14617 1 1
CVE-2019-7310 1 3
Bug #101366 1 1

pdfimages

CVE-2017-9865 1 1
CVE-2018-10768 1 1
CVE-2019-7310 1 2
CVE-2017-9776 10 21

libtiff tiffcp4

CVE-2015-8784 1 1
CVE-2019-7663 2/2 4
CVE-2016-10269 #1 3/2 5
CVE-2016-10269 #2 2/2 3
CVE-2016-5314 1 7

PHP exif CVE-2018-14883 13 50

OpenSSL
client CVE-2016-6309 1 1

x509 CVE-2016-2108 1 2
CVE-2017-3735 1 1

libxml2 libxml2_xml_read_memory_fuzzer CVE-2017-9047 3 28

libpng libpng_read_fuzzer CVE-2013-6954 1 2
CVE-2018-13785 1 1

libxml2 xmllint

CVE-2015-8317 15/10 204
CVE-2015-7497 1/1 198
CVE-2016-1835 1 3
CVE-2016-1836 1/1 5
CVE-2016-1762 6/3 245
CVE-2016-3627 3 3
CVE-2015-7942 1 1
CVE-2015-7499∗ 1/1 1
CVE-2015-7498∗ 7/6 242

libtiff tiff2pdf
CVE-2019-14973 3/1 6
CVE-2017-17973 1/1 1
Bug #C 1 1

Poppler pdftotext CVE-2019-12293 1 3

FreeType char2svg

CVE-2014-9663∗ 1 4
CVE-2015-9290+ 1 1
CVE-2014-9658 2 8
CVE-2014-9669∗ 11/1 23
CVE-2014-2240 1 23
CVE-2014-9659 2 3
CVE-2015-9383∗ 3/1 4
CVE-2015-9381+ 1 1

SoX(MP3) sox

CVE-2019-8355 2 3
CVE-2019-8357 5/2 5
CVE-2019-8354∗ 1/1 1
CVE-2019-8356∗ 1/1 2
CVE-2017-18189 1 1
CVE-2019-13590 1 1

SoX(WAV) sox

CVE-2019-8355 2 3
CVE-2019-8357 5/1 5
CVE-2019-8354∗ 1/1 1
CVE-2019-8356∗ 1/1 2
CVE-2017-11332 1 1
CVE-2017-18189 1 1



Table 6: PoC shrink rate with afl-tmin: PoC length, bitmap size, edges hit count, and side effects are listed.

Program Bug # Samples Median Mean Variance Negative
len % map % hit % len % map % hit % len map hit map % hit %

x509 CVE-2016-2108 100 24.14 4.94 6.28 41.10 4.83 22.57 0.165 0.002 0.103 15 12
CVE-2017-3735 100 0 15.61 7.13 3.25 15.73 6.57 0.021 0.001 0.006 0 19

libpng_read_fuzzer CVE-2018-13785 80 1.23 17.48 1.93 2.81 14.43 3.80 0.010 0.009 0.034 1.25 36.25
CVE-2013-6954 100 14.37 0.13 -0.69 21.58 1.33 -1.27 0.054 0.0009 0.016 18 65

pdftoppm
Bug #101366 91 99.11 5.88 36.62 82.45 12.17 33.97 0.118 0.021 0.090 15.18 12.04
CVE-2019-7310 100 0 -1.06 16.12 0 0.85 11.11 0 0.006 0.088 53.5 39.5
CVE-2017-14617 97 96.05 5.81 32.35 96.31 8.06 31.36 0.0001 0.003 0.030 2.53 4.56

pdfimages CVE-2017-9865 83 98.20 13.52 12.57 65.18 12.41 5.50 0.199 0.003 0.049 1.20 34.93

tiffcp

CVE-2016-5314 341 0.78 11.85 18.12 14.40 12.56 19.33 0.086 0.002 0.006 0 0
CVE-2016-10269 #1 251 10.71 16.32 24.15 14.22 16.16 24.97 0.031 0.001 0.002 0 0
CVE-2016-10269 #2 149 1.25 15.08 20.20 10.50 15.13 19.85 0.045 0.001 0.002 0 0
CVE-2015-8784 50 1.25 15.56 21.08 13.57 19.76 25.54 0.066 0.012 0.026 0 2
CVE-2019-7663 200 10.71 20.23 32.96 37.33 19.72 38.39 0.134 0.004 0.024 1.5 0

Table 7: Evaluation results (0 and 60min IgorFuzz running time, the “*” in cut-off time column indicates clustering results that
ground-truth bug labels are assigned).

Program # bugs ASan rep(s) # samp. # crash # call C. Igor Top Frame (%) BFF-5 (%) honggfuzz (%) afl-collect (%) cut-off time Igor (%)
addr/uniq stack P IP F P IP F P IP F P IP F (minutes) P IP F

pdfimages 3 HO, SO 410 12 23
2

48 63 47 62 47 62 47 62
0 88 94 87

3 60 100 100 100100 100 100 100
* 99 99 99

pdftoppm 3 HO, FP 161 5
2

95 98 95 98 95 98
0 70 99 79

2 60 69 100 803 100 100 100 100 100 100
* 100 100 100

tiffcp 5 HO 991 6/3 20
17

85 89 80 88 76 74 88 67 68 88 67 68
0 98 65 77

5 60 100 100 100
* 90 90 92

tiff2pdf 3 HO, HU 385 3/2 8
3

92 91 89 89 93 89 94 89 94
0 98 98 98

3 60 98 98 9899 99 99
* 98 98 98

x509 2 HO 150 3
2

75 83 75 83
0 100 100 100

2 60 100 100 1002 100 100 100 100 100 100 100 100
* 100 100 100

libpng_read_fuzzer 2 FP 150 3
2

72 81 72 81 72 81 72 81
0 100 100 100

2 60 100 100 1002 100 100 100 100
* 100 100 100

xmllint 8 HO, SO, HU 1581 25/14 901
4

78 59 64 78 55 62 78 55 62 79 3 4
0 72 95 77

19 60 97 63 74
* 94 74 82

char2svg 5 HO, SO, HU 1087 21/20 67
6

66 72 14 20 14 20 14 20
0 90 67 71

9 60 100 67 79100 100 100 100
* 86 67 69

sox (MP3) 4 HO, SO 260 8
4

63 74 58 71 58 71 58 71
0 100 100 100

4 60 100 100 1006 100 100 100 100
* 100 100 100

sox (WAV) 4 HO, SO, FP 356 6 8
4

67 77 66 76 66 76 66 76
0 100 100 100

4 60 100 100 100100 100 100 100
* 100 100 100



basic blocks                edges                    trace len. basic blocks               edges                    trace len. basic blocks               edges                    trace len.

basic blocks              edges                    trace len. basic blocks               edges                    trace len.

Figure 11: Comparison in three dimensions (basic blocks, edges, and trace length) before and after reduction with IgorFuzz.


	Abstract
	1 Introduction
	2 Background and Intuition
	2.1 Behavioral Metrics
	2.2 Test Case Reduction
	2.3 Our Approach: Igor

	3 Igor Design
	3.1 Data Preprocessing
	3.2 IgorFuzz: Minimum-Coverage Fuzzing
	3.3 Test Case Similarity Measurement
	3.4 Bug Clustering

	4 Implementation
	5 Experimental Evaluation
	5.1 Benchmarks
	5.2 Summary of Results
	5.3 Test Case Reduction
	5.4 Graph Similarity After Minimization
	5.5 Verifying Minimization Results

	6 Case Studies
	6.1 Assessing CVE Accuracy
	6.2 High-value Needles in Test Case Haystacks
	6.3 Detecting Semantically Equivalent Bugs

	7 Limitations
	8 Related Work
	8.1 Test Case Reduction
	8.2 Crash Grouping and Deduplication
	8.3 Fault Localization

	9 Conclusion
	10 Acknowledgements
	References
	A Bug/Test Case Distribution Clustering
	B Data Set Statistics
	C IgorFuzz Mitigates afl-tmin Limitation
	D IgorFuzz Does Not Waste Time on Error Seeds

