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SYSTEMS ATTACKS AND DEFENSES 

S oftware contains bugs, and some 
bugs are exploitable. Mitigations 

protect our systems in the presence 
of these vulnerabilities, often stop­
ping the program once a security 
violation has been detected. The alter­
native is to discover bugs during de ­
velopment and fix them 
in the code. The task of 
finding and reproducing 
bugs is difficult; however, 
fuzzing is an efficient way 
to find security­critical 
bugs by triggering ex ­
ceptions, such as crashes, 
memory corruption, or 
assertion failures automatically (or 
with a little help). Furthermore, fuzz­
ing comes with a witness (proof of the 
vulnerability) that enables developers 
to reproduce the bug and fix it.

Software testing broadly focuses 
on discovering and patching bugs 
during development. Unfortunately, 
a program is only secure if it is free 
of unwanted exceptions. Security, 
therefore, requires proof of the ab ­
sence of security violations. For exam­
ple, a bug becomes a vulnerability if 
any attacker­controlled input reaches 
a program location that allows a 
security violation, such as memory 
corruption. Software security testing, 
therefore, requires reasoning about all 
possible executions of code at once 
to produce a witness that violates the 
security property. As Edsger W. Dijks­
tra said in 1970: “Program testing can 
be used to show the presence of bugs, 
but never to show their absence!”

System software, such as a browser, 
a runtime system, or a kernel, is writ­
ten in low­level languages (such as C 
and C++) that are prone to exploit­
able, low­level defects. Undefined 
behavior is at the root of low­level 
vulnerabilities, e.g., invalid pointer 

dereferences resulting in memory 
corruption, casting to an incompat­
ible type leading to type confusion, 
integer overflows, or application 
programming interface (API) con­
fusion. To cope with the complexity 
of current programs and find bugs, 
companies such as Google, Micro­
soft, and Apple integrate dynamic 
testing into their software develop­
ment cycle.

Fuzzing, the process of provid­
ing random input to a program to 
intentionally trigger crashes, has been 
around since the early 1980s. A revival 
of fuzzing techniques is taking place 
as evidenced by papers presented at 
top­tier security conferences show­
ing improvements in the techniques’ 
effectiveness. The idea of fuzzing is 
simple: execute a program in a test 
environment with random input and 
see if it crashes. The fuzzing process is 
inherently sound but incomplete. By 
producing trial cases and observing 
whether the tested program crashes, 
fuzzing produces a witness for each 

discovered crash. As a dynamic testing 
technique, fuzzing is incomplete for 
nontrivial programs as it will neither 
cover all possible program paths nor 
all data­flow paths except when run 
for an infinite amount of time. Fuzz­
ing strategies are inherently optimiza­

tion problems where the 
available resources are 
used to discover as many 
bugs as possible, covering 
as much of the program 
functionality as possible 
through a probabilistic 
exploration process. Due 
to its nature as a dynamic 

testing technique, fuzzing faces several 
unique challenges:

 ■ Input generation: Fuzzers generate 
inputs based on a mutation strat­
egy to explore a new state. Because 
the fuzzer is aware of the program 
structure, it can tailor input gener­
ation to the program. The under­
lying strategy determines how 
effectively the fuzzer explores a 
given state space. A challenge for 
input generation is finding the 
balance between exploring new 
paths (control flow) and execut­
ing the same paths with different 
input (data flow).

 ■ Execution engine: The execution 
engine takes newly generated input 
and executes the program under 
test with that input to detect flaws. 
Fuzzers must distinguish between 
benign and buggy executions. Not 
every bug results in an immediate 
segmentation fault, and detecting a 
state violation is a challenging task, 
especially as code generally does 
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The idea of fuzzing is simple: execute 

a program in a test environment with 

random input and see if it crashes.



not come with a formal model. 
Additionally, the fuzzer must dis­
ambiguate crashes to identify bugs 
without missing true positives.

 ■ Coverage wall: Fuzzing struggles 
with some aspects of code. It may, 
for example, have difficulty han­
dling a complex API, checksums 
in file formats, or hard compari­
sons, such as a password check. 
Preparing the fuzzing environ­
ment is a crucial step to increase 
the efficiency of fuzzing.

 ■ Evaluating fuzzing effectiveness: 
Defining the metrics for evaluat­
ing the effectiveness 
of a fuzzing campaign 
is chal lenging. For 
most programs, the 
state space is (close to) 
infinite, and fuzzing is 
a brute­force search in 
this state space. Decid­
ing, for example, when 
to move to another target, path, or 
input is a crucial aspect of fuzzing. 
Orthogonally, comparing differ­
ent fuzzing techniques requires an 
understanding of the strengths of 
a fuzzer and the underlying statis­
tics to enable a fair comparison.

Input Generation
Input generation is essential to the 
fuzzing process as every fuzzer must 
automatically generate test cases to 
be run on the execution engine. The 
cost of generating a single input must 
be low, following the underlying 
philosophy of fuzzing where itera­
tions are cheap. Through input gen­
eration, the fuzzer implicitly selects 
which parts of the tested program 
are executed. Input generation must 
balance data­flow and control­flow 
exploration (discovering new code 
areas compared to revisiting previ­
ously executed code areas with alter­
nate data) while considering what 
areas to focus on. There are two fun­
damental forms of input generation: 
model­ and mutation­based input 
generation. The first is aware of the 
input format while the latter is not.

Knowledge of the input structure 
given through a formal description 
enables model­based input genera­
tion to produce (mostly) valid test 
cases. The model specifies the input 
format and implicitly indicates the 
explorable state space. Based on the 
model, the fuzzer can produce valid 
test cases that satisfy many checks 
in the program, such as valid state 
checks, dependencies between fields, 
or checksums such as a CRC32. For 
example, without an input model, 
most randomly generated test cases 
will fail the equality check for a cor­

rect checksum and quickly error 
out without triggering any complex 
behavior. The model allows input 
generation to balance the created test 
inputs according to the underlying 
input protocol. The disadvantage of 
model­based input generation is that 
it needs an actual model. Most input 
formats are not formally described 
and will require an analyst to define 
the intricate dependencies.

Mutation­based input genera­
tion requires a set of seed inputs 
that trigger valid functionality in the 
program and then leverages random 
mutation to modify these seeds. Pro­
viding a set of valid inputs is signifi­
cantly easier than formally specifying 
an input format. The input­mutation 
process then constantly modifies 
these input seeds to trigger behavior 
that researchers want to study.

Regardless of the input­mutation 
strategy, fuzzers need a fitness func­
tion to assess the quality of the new 
input and guide the generation of 
new input. A fuzzer may leverage the 
program structure and code coverage 
as fitness functions. There are three 
approaches to observing the program 

during fuzzing to provide input to 
the fitness function. White­box fuzz­
ing infers the program specification 
through program analysis but often 
results in untenable cost. For exam­
ple, the scalable automated guided 
execution white­box fuzzer leverages 
symbolic execution to explore differ­
ent program paths. Black­box fuzzing 
blindly generates new input without 
reflection. The lack of a fitness func­
tion limits black­box fuzzing to func­
tionality close to the provided test 
cases. Grey­box fuzzing leverages 
lightweight program instrumenta­

tion instead of heavier 
program analysis to infer 
coverage during the fuzz­
ing campaign itself, merg­
ing analysis and testing.

Coverage­guided gray­ 
box fuzzing combines 
mutation­based input 
generation with program 

instrumentation to detect whenever 
a mutated input reaches new cover­
age. Program instrumentation tracks 
which areas of the code are executed, 
and the coverage profile is tied to 
specific inputs. Whenever an input 
mutation generates new coverage, it 
is added to the set of inputs for muta­
tion. This approach is highly efficient 
due to the low­cost instrumentation 
but still results in broad program cov­
erage. Coverage­guided fuzzing is the 
current de facto standard, with Amer­
ican fuzzy lop1 and honggfuzz2 as the 
most prominent implementations. 
These fuzzers leverage execution feed­
back to tailor input generation with­
out requiring the analyst to have deep 
insight into the program structure.

A difficulty for input generation is 
finding the perfect balance between 
the need to discover new paths and 
the need to evaluate existing paths 
with different data. While the first 
increases coverage and explores new 
program areas, the latter explores 
already covered code through the 
use of different data. Existing metrics 
have a heavy control­flow focus as 
coverage measures how much of the 

Through input generation, the fuzzer 

implicitly selects which parts of the 

tested program are executed.
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program has already been explored. 
Data­flow coverage is only measured 
implicitly with inputs that execute 
the same paths but with different 
data values. A good input­generation 
mechanism balances the explicit 
goal of extending coverage with the 
implicit goal of rerunning the same 
input paths with different data.

Execution Engine
After the fuzzer generates test cases, 
it must execute them in a controlled 
environment and detect when a 
bug is triggered. The 
execution engine takes 
the fuzz input, executes 
the program under test, 
extracts runtime infor­
mation, such as cover­
age, and detects crashes 
(Figure 1). Ideally, a program would 
terminate whenever a flaw is trig­
gered. For example, an illegal pointer 
dereference on an unmapped mem­
ory page results in a segmentation 
fault, which terminates the program, 
allowing the executing engine to 
detect the flaw. Unfortunately, only 
a small subset of security violations 
will result in program crashes. Buf­
fer overflows into adjacent memory 
locations, for instance, may never 
be detected at all or may only be 
detected later if the overwritten 

data are used. The challenge for this 
component of the fuzzing process 
is to efficiently enable the detec­
tion of security violations. For 
example, without instrumentation, 
only illegal pointer dereferences to 
unmapped memory, control­flow 
transfers to nonexecutable memory, 
division by zero, or similar viola­
tions will trigger an exception.

To detect security violations 
early, the tested program may be 
instrumented with additional soft­
ware guards. It is especially tricky 

to find security violations through 
undefined behavior for code writ­
ten in system languages. Sanitiza­
tion analyzes and instruments the 
program during the compilation 
process to detect security violations. 
Address Sanitizer,3 the most com­
monly used sanitizer, employs prob­
ability to detect spatial and temporal 
memory safety violations by placing 
red zones around allocated memory 
objects, keeping track of allocated 
memory, and checking mem­
ory accesses. Other LLVM­based 

sanitizers cover undefined behav­
ior, uninitialized memory, or type 
safe  ty violations through illegal 
casts.4 Each sanitizer requires a cer­
tain type of instrumentation, which 
increases the performance cost. 
The use of sanitizers for fuzz­
ing, therefore, has to be carefully 
evaluated as, on one hand, it makes  
error detection more likely but, on 
the other hand, it reduces fuzz­
ing throughput.

The main goal of the execution 
engine is to conduct inputs as fast 
as possible. Several fuzzing optimi­
zations, such as fork servers, per­
sistent fuzzing, or special operating 
system (OS) primitives, reduce the 
time for each execution by adjust­
ing system parameters. Fuzzing 
with a fork server executes the pro­
gram up to a certain point and then 
forks new processes at that location 
for each new input. This allows the 
execution engine to skip over ini­
tialization code that would be the 
same for each execution. Persistent 
fuzzing allows the execution engine 
to reuse processes in a pool with 
new fuzzing input, resetting the 
state between executions. Different 
OS primitives for fuzzing reduce 
the cost of process creation by, for 

example, simplifying the 
creation of page tables and 
optimizing scheduling for 
short­lived processes.

Modern fuzzing is heav­
ily optimized and focuses 
on efficiency, measured 

by the number of bugs found per 
unit of time. Sometimes fuzzing 
efficiency is implicitly measured by 
the number of crashes found per 
unit of time. However, crashes are 
not necessarily unique, and many 
crashes could point to the same 
bug. Disambiguating crashes to 
locate unique bugs is an important 
but challenging task. Multiple bugs 
may cause a program crash at the 
same location, whereas one input 
may trigger multiple bugs. A fuzzer 
must triage crashes conservatively 
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Figure 1. Fuzzing consists of an execution engine and an input-generation process that runs executables, 
which are often instrumented with explicit memory safety checks. (a) The input-generation mechanism 
(the blue box marked “Input Generation”) may leverage existing test cases (“Tests”) and execution 
coverage to generate new test inputs. For each discovered crash, the fuzzer provides a witness (the 
input that triggers the crash). (b) The execution engine. (c) A “bug” triggers the crash. The icon marked 
“Coverage” indicates input that has passed through the execution engine. Some of that input may pass 
through the input-generation process again. Arrows indicate the direction of process. Exe: executable.

The main goal of the execution engine is 

to conduct inputs as fast as possible.
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so that no true bugs are removed. 
Yet the triaging must not overload 
the analyst with redundant crashes.

Coverage Wall
In addition to massive parallelism, a 
key advantage of fuzzing compared 
to more heavyweight analysis tech­
niques is its simplicity. However, 
due to this simplicity, fuzzing can 
get stuck in local minima in front 
of a coverage wall. When this hap­
pens, continuous input generation 
will not result in either 
additional crashes or 
new coverage. A com­
mon approach to cir­
cumvent the coverage 
wall is to extract seed val­
ues used for compari­
sons. These seed values 
are then used during the 
input­generation pro­
cess. Orthogonally, a developer 
can comment out hard checks, such 
as CRC32 comparisons, or checks 
for magic values. Removing these 
noncritical checks from the program 
requires a knowledgeable developer 
to tailor fuzzing for each program.

Several recent extensions5–8 try 
to bypass the coverage wall by auto­
matically detecting when the fuzzer 
gets stuck and, then, if the problem 
is detected, leveraging an auxil­
iary analysis to either produce new 
inputs or modify the program. It is 
essential that this (sometimes heavy­
weight) analysis is executed only 
rarely, as alternating between analy­
sis and fuzzing is costly and reduces 
fuzzing throughput.

Fuzzing libraries also face the 
challenge of experiencing low cov­
erage during unguided fuzzing cam­
paigns. Programs often call exported 
library functions in sequence, build­
ing up a complex state in the pro­
cess. The library functions execute 
sanity checks and quickly detect an 
illegal or missing state. These checks 
make library fuzzing challenging, as 
the fuzzer is not aware of the depen­
dencies between library functions. 

Existing approaches, such as Lib­
Fuzzer, require an analyst to prepare 
a test program that calls the library 
functions in a valid sequence to 
build up the necessary state to fuzz 
complex functions.

Evaluating Fuzzing
In theory, evaluating fuzzing is straight­
forward: in a given domain, if tech­
nique A finds more unique bugs than 
technique B, then technique A is 
superior to technique B. In practice, 

evaluating fuzzing is very difficult 
due to the randomness of the pro­
cess and domain specialization (e.g., 
a fuzzer may only work for a certain 
type of bug or in a certain environ­
ment). Rerunning the same experi­
ment with a different random seed 
may result in vastly different numbers 
of crashes, discovered bugs, and itera­
tions. A recent overview of the state 
of the art9 evaluated the common 
practices of recently published fuzz­
ing techniques. The study’s authors, 
after identifying common bench­
marking mistakes when comparing 
different fuzzers, drew four observa­
tions from their findings:

 ■ Multiple executions: A single exe­
cution is not enough due to the 
randomness in the fuzzing pro­
cess. Input mutation relies on ran­
domness to decide, according to 
the mutation strategy, where to 
mutate input and what to mutate. 
In a single run, one mechanism 
could discover more bugs simply 
by chance. To evaluate different 
mechanisms and measure noise, 
we require multiple trials and sta­
tistical tests. 

 ■ Crash triaging: Heuristics cannot 
be the only way to measure per­
formance. For example, collect­
ing crashing inputs or even stack 
bucketing is insufficient to iden­
tify unique bugs. Ground truth 
is needed to disambiguate crash­
ing inputs and correctly count 
the number of discovered bugs. A 
benchmark suite with ground truth 
will help.

 ■ Seed justification: The choice of seed 
must be documented, as different 

starting seeds provide 
vastly different start­
ing configurations, and 
not all techniques cope 
equally well with dif­
ferent seed characteris­
tics. Some mechanisms 
require a head start with 
seeds to execute reason­
able functionality, while 

others are perfectly fine to start with 
empty inputs.

 ■ Reasonable execution time: Fuzzing 
campaigns are generally executed 
over days or weeks. Comparing 
different mechanisms based on 
a few hours of execution time is 
not enough. A realistic evaluation, 
therefore, must run fuzzing cam­
paigns for at least 24 h.

These recommendations make 
fuzzing evaluation more com­
plex. Evaluating each mechanism 
now takes considerable time with 
experiments running multiple days to 
get enough statistical data for a fair 
and valid comparison. Unfortu­
nately, such a thorough evaluation 
is required for a true comparison and 
analysis of factors leading to better 
fuzzing results.

A Call for Future Work
With the advent of coverage­guided 
grey­box fuzzing,1,2 dynamic test­
ing has seen a renaissance. Many 
new techniques that improve secu­
rity testing have appeared. An 
important advantage of fuzzing is 
that each reported bug comes with 

Rerunning the same experiment with 

a different random seed may result in 

vastly different numbers of crashes, 

discovered bugs, and iterations.
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a witness that enables the deter­
ministic reproduction of the bug. 
Sanitization, the process of instru­
menting code with additional soft­
ware guards, helps in discovering 
bugs closer to their source. Over­
all, security testing remains chal­
lenging, especially for libraries or 
complex code, such as kernels or 
large software systems. As fuzz­
ers become more domain specific, 
an interesting challenge will be 
to make comparisons across dif­
ferent domains (e.g., comparing a 
grey­box kernel fuzzer for use­after­
free vulnerabilities with a black­box 
protocol fuzzer). Given the sig­
nificant recent improvements in 
fuzzing, exciting new results can be 
expected. Fuzzing will help make 
our systems more secure by find­
ing bugs during the development 
of code before they can cause harm 
during deployment.

Fuzzing is a hot research area 
with researchers striving to improve 
input generation, reduce the impact 
of each execution on performance, 
better detect security violations, 
and push fuzzing to new domains, 
such as kernel fuzzing or hardware 
fuzzing. These efforts bring excite­
ment to the field. 
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P ubl ic­ interest   technolog y 
isn’t new. Many organizations are 
working in this area, from older or ­
ganizations, such as EFF and EPIC,  
to newer ones, such as Verified 
Voting and Access Now. Many aca­
demic classes and programs com­
bine technology and public  policy. 
My cybersecurity policy class at  
the Harvard Kennedy School is 
just one example. Med ia  star t­
ups like The Markup are doing 

technolog y­driven jour nalism. 
There are even programs and ini­
tiatives related to public­interest 
te c h n o l o g y  i n s i d e  f o r ­ p r o f i t 
corporations.

This might all seem like a lot, 
but it ’s really not. There aren’t 
enough people doing it, there 
aren’t enough people who know 
it needs to be done, and there 
aren’t enough places to do it. 
We need to build a world where 

there is a viable career path for 
public­interest technologists.

There are many barriers. A report 
titled “A Pivotal Moment” (https://
www.netgainpartnership.org/s/pivot 
almoment.pdf) includes this quote: 

W hile we cite indiv idual 
instances of visionary leader­
ship and successful deploy­
ment of technology skill for 
the public interest, there was 
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