
78 January/February 2019 Copublished by the IEEE Computer and Reliability Societies 1540-7993/19©2019IEEE

Editors: D. Balzarotti, davide.balzarotti@eurecom.fr | W. Enck, whenk@ncsu.edu | T. Holz, thorsten.holz@rub.de | A. Stavrou, astavrou@gmu.edu

SYSTEMS ATTACKS AND DEFENSES

S oftware contains bugs, and some
bugs are exploitable. Mitigations

protect our systems in the presence
of these vulnerabilities, often stop­
ping the program once a security
violation has been detected. The alter­
native is to discover bugs during de ­
velopment and fix them
in the code. The task of
finding and reproducing
bugs is difficult; however,
fuzzing is an efficient way
to find security­critical
bugs by triggering ex ­
ceptions, such as crashes,
memory corruption, or
assertion failures automatically (or
with a little help). Furthermore, fuzz­
ing comes with a witness (proof of the
vulnerability) that enables developers
to reproduce the bug and fix it.

Software testing broadly focuses
on discovering and patching bugs
during development. Unfortunately,
a program is only secure if it is free
of unwanted exceptions. Security,
therefore, requires proof of the ab ­
sence of security violations. For exam­
ple, a bug becomes a vulnerability if
any attacker­controlled input reaches
a program location that allows a
security violation, such as memory
corruption. Software security testing,
therefore, requires reasoning about all
possible executions of code at once
to produce a witness that violates the
security property. As Edsger W. Dijks­
tra said in 1970: “Program testing can
be used to show the presence of bugs,
but never to show their absence!”

System software, such as a browser,
a runtime system, or a kernel, is writ­
ten in low­level languages (such as C
and C++) that are prone to exploit­
able, low­level defects. Undefined
behavior is at the root of low­level
vulnerabilities, e.g., invalid pointer

dereferences resulting in memory
corruption, casting to an incompat­
ible type leading to type confusion,
integer overflows, or application
programming interface (API) con­
fusion. To cope with the complexity
of current programs and find bugs,
companies such as Google, Micro­
soft, and Apple integrate dynamic
testing into their software develop­
ment cycle.

Fuzzing, the process of provid­
ing random input to a program to
intentionally trigger crashes, has been
around since the early 1980s. A revival
of fuzzing techniques is taking place
as evidenced by papers presented at
top­tier security conferences show­
ing improvements in the techniques’
effectiveness. The idea of fuzzing is
simple: execute a program in a test
environment with random input and
see if it crashes. The fuzzing process is
inherently sound but incomplete. By
producing trial cases and observing
whether the tested program crashes,
fuzzing produces a witness for each

discovered crash. As a dynamic testing
technique, fuzzing is incomplete for
nontrivial programs as it will neither
cover all possible program paths nor
all data­flow paths except when run
for an infinite amount of time. Fuzz­
ing strategies are inherently optimiza­

tion problems where the
available resources are
used to discover as many
bugs as possible, covering
as much of the program
functionality as possible
through a probabilistic
exploration process. Due
to its nature as a dynamic

testing technique, fuzzing faces several
unique challenges:

 ■ Input generation: Fuzzers generate
inputs based on a mutation strat­
egy to explore a new state. Because
the fuzzer is aware of the program
structure, it can tailor input gener­
ation to the program. The under­
lying strategy determines how
effectively the fuzzer explores a
given state space. A challenge for
input generation is finding the
balance between exploring new
paths (control flow) and execut­
ing the same paths with different
input (data flow).

 ■ Execution engine: The execution
engine takes newly generated input
and executes the program under
test with that input to detect flaws.
Fuzzers must distinguish between
benign and buggy executions. Not
every bug results in an immediate
segmentation fault, and detecting a
state violation is a challenging task,
especially as code generally does

The Fuzzing Hype-Train: How Random
Testing Triggers Thousands of Crashes
Mathias Payer | EPFL, Lausanne, Switzerland

Digital Object Identifier 10.1109/MSEC.2018.2889892
Date of publication: 20 March 2019

The idea of fuzzing is simple: execute

a program in a test environment with

random input and see if it crashes.

not come with a formal model.
Additionally, the fuzzer must dis­
ambiguate crashes to identify bugs
without missing true positives.

 ■ Coverage wall: Fuzzing struggles
with some aspects of code. It may,
for example, have difficulty han­
dling a complex API, checksums
in file formats, or hard compari­
sons, such as a password check.
Preparing the fuzzing environ­
ment is a crucial step to increase
the efficiency of fuzzing.

 ■ Evaluating fuzzing effectiveness:
Defining the metrics for evaluat­
ing the effectiveness
of a fuzzing campaign
is chal lenging. For
most programs, the
state space is (close to)
infinite, and fuzzing is
a brute­force search in
this state space. Decid­
ing, for example, when
to move to another target, path, or
input is a crucial aspect of fuzzing.
Orthogonally, comparing differ­
ent fuzzing techniques requires an
understanding of the strengths of
a fuzzer and the underlying statis­
tics to enable a fair comparison.

Input Generation
Input generation is essential to the
fuzzing process as every fuzzer must
automatically generate test cases to
be run on the execution engine. The
cost of generating a single input must
be low, following the underlying
philosophy of fuzzing where itera­
tions are cheap. Through input gen­
eration, the fuzzer implicitly selects
which parts of the tested program
are executed. Input generation must
balance data­flow and control­flow
exploration (discovering new code
areas compared to revisiting previ­
ously executed code areas with alter­
nate data) while considering what
areas to focus on. There are two fun­
damental forms of input generation:
model­ and mutation­based input
generation. The first is aware of the
input format while the latter is not.

Knowledge of the input structure
given through a formal description
enables model­based input genera­
tion to produce (mostly) valid test
cases. The model specifies the input
format and implicitly indicates the
explorable state space. Based on the
model, the fuzzer can produce valid
test cases that satisfy many checks
in the program, such as valid state
checks, dependencies between fields,
or checksums such as a CRC32. For
example, without an input model,
most randomly generated test cases
will fail the equality check for a cor­

rect checksum and quickly error
out without triggering any complex
behavior. The model allows input
generation to balance the created test
inputs according to the underlying
input protocol. The disadvantage of
model­based input generation is that
it needs an actual model. Most input
formats are not formally described
and will require an analyst to define
the intricate dependencies.

Mutation­based input genera­
tion requires a set of seed inputs
that trigger valid functionality in the
program and then leverages random
mutation to modify these seeds. Pro­
viding a set of valid inputs is signifi­
cantly easier than formally specifying
an input format. The input­mutation
process then constantly modifies
these input seeds to trigger behavior
that researchers want to study.

Regardless of the input­mutation
strategy, fuzzers need a fitness func­
tion to assess the quality of the new
input and guide the generation of
new input. A fuzzer may leverage the
program structure and code coverage
as fitness functions. There are three
approaches to observing the program

during fuzzing to provide input to
the fitness function. White­box fuzz­
ing infers the program specification
through program analysis but often
results in untenable cost. For exam­
ple, the scalable automated guided
execution white­box fuzzer leverages
symbolic execution to explore differ­
ent program paths. Black­box fuzzing
blindly generates new input without
reflection. The lack of a fitness func­
tion limits black­box fuzzing to func­
tionality close to the provided test
cases. Grey­box fuzzing leverages
lightweight program instrumenta­

tion instead of heavier
program analysis to infer
coverage during the fuzz­
ing campaign itself, merg­
ing analysis and testing.

Coverage­guided gray­
box fuzzing combines
mutation­based input
generation with program

instrumentation to detect whenever
a mutated input reaches new cover­
age. Program instrumentation tracks
which areas of the code are executed,
and the coverage profile is tied to
specific inputs. Whenever an input
mutation generates new coverage, it
is added to the set of inputs for muta­
tion. This approach is highly efficient
due to the low­cost instrumentation
but still results in broad program cov­
erage. Coverage­guided fuzzing is the
current de facto standard, with Amer­
ican fuzzy lop1 and honggfuzz2 as the
most prominent implementations.
These fuzzers leverage execution feed­
back to tailor input generation with­
out requiring the analyst to have deep
insight into the program structure.

A difficulty for input generation is
finding the perfect balance between
the need to discover new paths and
the need to evaluate existing paths
with different data. While the first
increases coverage and explores new
program areas, the latter explores
already covered code through the
use of different data. Existing metrics
have a heavy control­flow focus as
coverage measures how much of the

Through input generation, the fuzzer

implicitly selects which parts of the

tested program are executed.

www.computer.org/security 79

program has already been explored.
Data­flow coverage is only measured
implicitly with inputs that execute
the same paths but with different
data values. A good input­generation
mechanism balances the explicit
goal of extending coverage with the
implicit goal of rerunning the same
input paths with different data.

Execution Engine
After the fuzzer generates test cases,
it must execute them in a controlled
environment and detect when a
bug is triggered. The
execution engine takes
the fuzz input, executes
the program under test,
extracts runtime infor­
mation, such as cover­
age, and detects crashes
(Figure 1). Ideally, a program would
terminate whenever a flaw is trig­
gered. For example, an illegal pointer
dereference on an unmapped mem­
ory page results in a segmentation
fault, which terminates the program,
allowing the executing engine to
detect the flaw. Unfortunately, only
a small subset of security violations
will result in program crashes. Buf­
fer overflows into adjacent memory
locations, for instance, may never
be detected at all or may only be
detected later if the overwritten

data are used. The challenge for this
component of the fuzzing process
is to efficiently enable the detec­
tion of security violations. For
example, without instrumentation,
only illegal pointer dereferences to
unmapped memory, control­flow
transfers to nonexecutable memory,
division by zero, or similar viola­
tions will trigger an exception.

To detect security violations
early, the tested program may be
instrumented with additional soft­
ware guards. It is especially tricky

to find security violations through
undefined behavior for code writ­
ten in system languages. Sanitiza­
tion analyzes and instruments the
program during the compilation
process to detect security violations.
Address Sanitizer,3 the most com­
monly used sanitizer, employs prob­
ability to detect spatial and temporal
memory safety violations by placing
red zones around allocated memory
objects, keeping track of allocated
memory, and checking mem­
ory accesses. Other LLVM­based

sanitizers cover undefined behav­
ior, uninitialized memory, or type
safe ty violations through illegal
casts.4 Each sanitizer requires a cer­
tain type of instrumentation, which
increases the performance cost.
The use of sanitizers for fuzz­
ing, therefore, has to be carefully
evaluated as, on one hand, it makes
error detection more likely but, on
the other hand, it reduces fuzz­
ing throughput.

The main goal of the execution
engine is to conduct inputs as fast
as possible. Several fuzzing optimi­
zations, such as fork servers, per­
sistent fuzzing, or special operating
system (OS) primitives, reduce the
time for each execution by adjust­
ing system parameters. Fuzzing
with a fork server executes the pro­
gram up to a certain point and then
forks new processes at that location
for each new input. This allows the
execution engine to skip over ini­
tialization code that would be the
same for each execution. Persistent
fuzzing allows the execution engine
to reuse processes in a pool with
new fuzzing input, resetting the
state between executions. Different
OS primitives for fuzzing reduce
the cost of process creation by, for

example, simplifying the
creation of page tables and
optimizing scheduling for
short­lived processes.

Modern fuzzing is heav­
ily optimized and focuses
on efficiency, measured

by the number of bugs found per
unit of time. Sometimes fuzzing
efficiency is implicitly measured by
the number of crashes found per
unit of time. However, crashes are
not necessarily unique, and many
crashes could point to the same
bug. Disambiguating crashes to
locate unique bugs is an important
but challenging task. Multiple bugs
may cause a program crash at the
same location, whereas one input
may trigger multiple bugs. A fuzzer
must triage crashes conservatively

Input Generation

Tests

Debug
Exe Coverage

(c)(a) (b)

Figure 1. Fuzzing consists of an execution engine and an input-generation process that runs executables,
which are often instrumented with explicit memory safety checks. (a) The input-generation mechanism
(the blue box marked “Input Generation”) may leverage existing test cases (“Tests”) and execution
coverage to generate new test inputs. For each discovered crash, the fuzzer provides a witness (the
input that triggers the crash). (b) The execution engine. (c) A “bug” triggers the crash. The icon marked
“Coverage” indicates input that has passed through the execution engine. Some of that input may pass
through the input-generation process again. Arrows indicate the direction of process. Exe: executable.

The main goal of the execution engine is

to conduct inputs as fast as possible.

SYSTEMS ATTACKS AND DEFENSES

80 IEEE Security & Privacy January/February 2019

so that no true bugs are removed.
Yet the triaging must not overload
the analyst with redundant crashes.

Coverage Wall
In addition to massive parallelism, a
key advantage of fuzzing compared
to more heavyweight analysis tech­
niques is its simplicity. However,
due to this simplicity, fuzzing can
get stuck in local minima in front
of a coverage wall. When this hap­
pens, continuous input generation
will not result in either
additional crashes or
new coverage. A com­
mon approach to cir­
cumvent the coverage
wall is to extract seed val­
ues used for compari­
sons. These seed values
are then used during the
input­generation pro­
cess. Orthogonally, a developer
can comment out hard checks, such
as CRC32 comparisons, or checks
for magic values. Removing these
noncritical checks from the program
requires a knowledgeable developer
to tailor fuzzing for each program.

Several recent extensions5–8 try
to bypass the coverage wall by auto­
matically detecting when the fuzzer
gets stuck and, then, if the problem
is detected, leveraging an auxil­
iary analysis to either produce new
inputs or modify the program. It is
essential that this (sometimes heavy­
weight) analysis is executed only
rarely, as alternating between analy­
sis and fuzzing is costly and reduces
fuzzing throughput.

Fuzzing libraries also face the
challenge of experiencing low cov­
erage during unguided fuzzing cam­
paigns. Programs often call exported
library functions in sequence, build­
ing up a complex state in the pro­
cess. The library functions execute
sanity checks and quickly detect an
illegal or missing state. These checks
make library fuzzing challenging, as
the fuzzer is not aware of the depen­
dencies between library functions.

Existing approaches, such as Lib­
Fuzzer, require an analyst to prepare
a test program that calls the library
functions in a valid sequence to
build up the necessary state to fuzz
complex functions.

Evaluating Fuzzing
In theory, evaluating fuzzing is straight­
forward: in a given domain, if tech­
nique A finds more unique bugs than
technique B, then technique A is
superior to technique B. In practice,

evaluating fuzzing is very difficult
due to the randomness of the pro­
cess and domain specialization (e.g.,
a fuzzer may only work for a certain
type of bug or in a certain environ­
ment). Rerunning the same experi­
ment with a different random seed
may result in vastly different numbers
of crashes, discovered bugs, and itera­
tions. A recent overview of the state
of the art9 evaluated the common
practices of recently published fuzz­
ing techniques. The study’s authors,
after identifying common bench­
marking mistakes when comparing
different fuzzers, drew four observa­
tions from their findings:

 ■ Multiple executions: A single exe­
cution is not enough due to the
randomness in the fuzzing pro­
cess. Input mutation relies on ran­
domness to decide, according to
the mutation strategy, where to
mutate input and what to mutate.
In a single run, one mechanism
could discover more bugs simply
by chance. To evaluate different
mechanisms and measure noise,
we require multiple trials and sta­
tistical tests.

 ■ Crash triaging: Heuristics cannot
be the only way to measure per­
formance. For example, collect­
ing crashing inputs or even stack
bucketing is insufficient to iden­
tify unique bugs. Ground truth
is needed to disambiguate crash­
ing inputs and correctly count
the number of discovered bugs. A
benchmark suite with ground truth
will help.

 ■ Seed justification: The choice of seed
must be documented, as different

starting seeds provide
vastly different start­
ing configurations, and
not all techniques cope
equally well with dif­
ferent seed characteris­
tics. Some mechanisms
require a head start with
seeds to execute reason­
able functionality, while

others are perfectly fine to start with
empty inputs.

 ■ Reasonable execution time: Fuzzing
campaigns are generally executed
over days or weeks. Comparing
different mechanisms based on
a few hours of execution time is
not enough. A realistic evaluation,
therefore, must run fuzzing cam­
paigns for at least 24 h.

These recommendations make
fuzzing evaluation more com­
plex. Evaluating each mechanism
now takes considerable time with
experiments running multiple days to
get enough statistical data for a fair
and valid comparison. Unfortu­
nately, such a thorough evaluation
is required for a true comparison and
analysis of factors leading to better
fuzzing results.

A Call for Future Work
With the advent of coverage­guided
grey­box fuzzing,1,2 dynamic test­
ing has seen a renaissance. Many
new techniques that improve secu­
rity testing have appeared. An
important advantage of fuzzing is
that each reported bug comes with

Rerunning the same experiment with

a different random seed may result in

vastly different numbers of crashes,

discovered bugs, and iterations.

www.computer.org/security 81

a witness that enables the deter­
ministic reproduction of the bug.
Sanitization, the process of instru­
menting code with additional soft­
ware guards, helps in discovering
bugs closer to their source. Over­
all, security testing remains chal­
lenging, especially for libraries or
complex code, such as kernels or
large software systems. As fuzz­
ers become more domain specific,
an interesting challenge will be
to make comparisons across dif­
ferent domains (e.g., comparing a
grey­box kernel fuzzer for use­after­
free vulnerabilities with a black­box
protocol fuzzer). Given the sig­
nificant recent improvements in
fuzzing, exciting new results can be
expected. Fuzzing will help make
our systems more secure by find­
ing bugs during the development
of code before they can cause harm
during deployment.

Fuzzing is a hot research area
with researchers striving to improve
input generation, reduce the impact
of each execution on performance,
better detect security violations,
and push fuzzing to new domains,
such as kernel fuzzing or hardware
fuzzing. These efforts bring excite­
ment to the field.

References
 1. M. Zalewski, “American fuzzy lop

(AFL),” 2013. [Online]. Available:
http://lcamtuf.coredump.cx/afl
/technical_details.txt

 2. R . Swiecki, “Honggfuzz,” 2010.
[Online]. Available: https://github
.com/google/honggfuzz

 3. K . Serebr yany, D. Br uening ,
A . Potapenko, and D. Vyukov,
“AddressSanitizer: A fast address
sanity checker,” presented at the
2012 USENIX Annual Techni­
cal Conference, Boston, MA .
[Online]. Available: https://www
.useni x .org/conference/atc12
/technical­sessions/presentation
/serebryany

 4. Y. Jeon, P. Biswas, S. A. Carr, B. Lee,
and M. Payer, “HexType: Efficient
detection of type confusion errors
for C++,” in Proc. 2017 ACM SIG-
SAC Conf. Computer and Communi-
cations Security, pp. 2373–2387. doi:
10.1145/3133956.3134062.

 5. N. Stephens et al., “Driller: Augment­
ing fuzzing through selective symbolic
execution,” in Proc. ISOC Network
and Security System Symp., 2016. doi:
10.14722/ndss.2016.23368.

 6. S. Raway, V. Jain, A. Kumar, L.
Cojocar, C. Giuf fr ida , and H.
Bos, “VUzzer: Application­aware

evolutionary fuzzing,” in Proc.
ISOC Network and Security Sys-
tem Symp., 2017. doi: 10.14722/
ndss.2017.23404.

 7. H. Peng, Y. Shoshitaishvili, and M.
Payer, “T­Fuzz: Fuzzing by program
transformation,” in Proc. 2018 IEEE
Symp. Security and Privacy. doi:
10.1109/SP.2018.00056.

 8. I. Yun, S. Lee, M. Xu, Y. Jang, and
T. Kim, “QSYM: A practical con­
colic execution engine tailored for
hybrid fuzzing,” presented at the
27th USENIX Security Symp., Bal­
timore, MD, 2018.

 9. G. Klees, A . Ruef, B. Cooper,
S. Wei, and M. Hicks, “Evaluat­
ing fuzz testing,” in Proc. ACM
Conf. Computer and Communica-
tions Security (CCS), 2018. doi:
10.1145/3243734.3243804.

Mathias Payer is a security researcher
and an assistant professor at the
EPFL School of Computer and
Communication Sciences, leading
the HexHive group. His research
focuses on protecting appli ca ­
tions in the presence of vulner­
abilities, with a focus on memory
corruption and type violations.
Contact him at mathias.payer@
nebelwelt.net.

P ubl ic­ interest technolog y
isn’t new. Many organizations are
working in this area, from older or ­
ganizations, such as EFF and EPIC,
to newer ones, such as Verified
Voting and Access Now. Many aca­
demic classes and programs com­
bine technology and public policy.
My cybersecurity policy class at
the Harvard Kennedy School is
just one example. Med ia star t­
ups like The Markup are doing

technolog y­driven jour nalism.
There are even programs and ini­
tiatives related to public­interest
te c h n o l o g y i n s i d e f o r ­ p r o f i t
corporations.

This might all seem like a lot,
but it ’s really not. There aren’t
enough people doing it, there
aren’t enough people who know
it needs to be done, and there
aren’t enough places to do it.
We need to build a world where

there is a viable career path for
public­interest technologists.

There are many barriers. A report
titled “A Pivotal Moment” (https://
www.netgainpartnership.org/s/pivot
almoment.pdf) includes this quote:

W hile we cite indiv idual
instances of visionary leader­
ship and successful deploy­
ment of technology skill for
the public interest, there was

continued from p. 84Last Word

SYSTEMS ATTACKS AND DEFENSES

82 IEEE Security & Privacy January/February 2019

