
One Process to Reap Them All
Garbage Collection as-a-Service

Ahmed Hussein†‡ Mathias Payer† Antony L. Hosking†∗ Chris Vick§
‡Huawei, USA †Purdue U., USA ∗ANU / Data61, Australia §Qualcomm, USA

ahmed.hussein2@huawei.com mpayer@purdue.edu antony.hosking@anu.edu.au cvick@quicinc.com

Abstract
Ubiquitous mobile platforms such as Android rely on man-
aged language run-time environments, also known as lan-
guage virtual machines (VMs), to run a diverse range of user
applications (apps). Each app runs in its own private VM in-
stance, and each VM makes its own private local decisions in
managing its use of processor and memory resources. More-
over, the operating system and the hardware do not com-
municate their low-level decisions regarding power manage-
ment with the high-level app environment. This lack of co-
ordination across layers and across apps restricts more effec-
tive global use of resources on the device.

We address this problem by devising and implement-
ing a global memory manager service for Android that op-
timizes memory usage, run-time performance, and power
consumption globally across all apps running on the de-
vice. The service focuses on the impact of garbage collec-
tion (GC) along these dimensions, since GC poses a sig-
nificant overhead within managed run-time environments.
Our prototype collects system-wide statistics from all run-
ning VMs, makes centralized decisions about memory man-
agement across apps and across software layers, and also
collects garbage centrally. Furthermore, the global memory
manager coordinates with the power manager to tune collec-
tor scheduling. In our evaluation, we illustrate the impact of
such a central memory management service in reducing total
energy consumption (up to 18%) and increasing throughput
(up to 12%), and improving memory utilization and adapt-
ability to user activities.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

VEE’ 17, April 08-09, 2017, Xi’an, China
c© 2017 ACM. ISBN 978-1-4503-4948-2/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3050748.3050754

Categories and Subject Descriptors C.1.4 [Parallel Ar-
chitectures]: Mobile processors; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage col-
lection), Run-time environments; D.4.8 [Performance]:
Measurements
Keywords mobile, power, energy, Android, smartphones

1. Introduction
Mobile devices must balance performance and responsive-
ness while being constrained by energy consumption and
thermal dissipation. With performance, heat, and power
consumption strongly tied together, mobile devices come
bundled with software components such as kernel gover-
nors [11] and proprietary thermal engines that control power
and thermal properties (dynamic frequency). The crude de-
cisions made by these engines are orthogonal to heuristics
for resource management embedded within software com-
ponents at the user space level.

With the number of Android [28, 31] devices exceeding
a billion,1 the dominance of the Android run-time environ-
ment introduces an interesting challenge: we are faced with
devices that continuously run dozens of VMs in parallel as
apps and as services. All these VMs share a set of con-
strained and over-committed resources. Without global co-
ordination, each VM optimizes independently across com-
peting goals: performance, responsiveness, and power con-
sumption. For example, each VM decides independently
what to compile (JIT), when to garbage collect, and what
to collect (e.g., using a minor or a major collection). This
situation is vastly different from classic desktop or applica-
tion server systems where VMs use dedicated resources, and
where only one or a handful of VM processes run concur-
rently.

1.1 Motivation
VMs substantially increase productivity by abstracting the
hardware and offering useful services such as dynamic op-
timization, class resolution and, garbage collection (GC).
However, VM services impose performance and energy
costs, ranging from 5% to over 70% [14, 18, 34, 40, 53].

1http://expandedramblings.com/index.php/android-statistics/

http://expandedramblings.com/index.php/android-statistics/

Tuning of GC. VM services typically come with a num-
ber of optimization and scheduling heuristics designed to
meet the performance needs of supported applications and
users. The tuning of GC performance is achieved by design-
ing a GC policy that uses a set of predefined heuristics and
the state of app execution to decide when and what to col-
lect [36]. Configuring a garbage collector is a tedious task
because a VM often uses tens of parameters when tuning the
garbage collector, specific to the needs of a particular appli-
cation: e.g., initial heap size, heap resizing, and the mode of
collection to perform [10, 42]. Even for a single VM, it is ex-
tremely difficult to identify the best collector and heuristics
for all service configurations [36, 39, 55].
GC Impact on Energy. Recent interest in fine-grained
power measurement shows that GC has a significant im-
pact on energy consumed by the apps, ranging from 7% to
30% [14, 53]. This happens not only because of its explicit
overhead on CPU and memory cycles, but also because of
implicit scheduling decisions by the OS and hardware with
respect to CPU cores. Therefore, a potential approach to op-
timize GC cost per single VM is to take advantage of GC
idleness and control the frequency of the core on which the
concurrent collector thread is running [23, 34].
Distributed Controls. Mobile platforms have a software
stack comprising various layers with lower-level layers pro-
viding services to upper-level layers. These layers of abstrac-
tion typically are not tuned in harmony with VM implemen-
tation. For example: (i) Device Configurations: The mobile
system has globally fixed VM configurations such as the ini-
tial and maximum heap sizes; (ii) OS: Some heuristics and
configurations may be applied on their own, without coor-
dinating with the VM [37, 41]—e.g., the low memory killer
that handles out-of-memory events.
Interference Across Running VMs. With dozens of VMs
running concurrently on constrained devices, tuning mem-
ory configurations for mobile platforms is even more chal-
lenging due to interference between VMs across the layers of
the hardware and software stack. Local per-VM tuning is a
sub-structured approach that mostly fails to find the globally
optimal policy for the entire device. For example, throttling
the CPU during GC of the highest priority app [34] cannot
handle concurrent GC tasks across the running apps.

1.2 Contributions
Here we consider the impact of GC on the device’s over-
all performance. We identify the missing coordination be-
tween concurrent VMs as an opportunity for optimization
on mobile systems along the dimensions of (i) memory us-
age, (ii) runtime performance, and (iii) power consumption.
A global service that collects statistics from all running VMs
can optimize across these dimensions, and it allows for coor-
dination with power managers to achieve global energy op-
timization. The service can prioritize GC operations based
on estimates of bytes freed, reducing the total work required

by individual VMs. The benefits of a global service include
efficient resource management, feasible methodology to an-
alyze system behavior, fine control over tuning parameters,
and excluded redundancy across the parallel VMs.

In this paper, we show that a global memory management
service provides better control over GC costs and memory
utilization. Unlike the existing execution mode, where each
collector runs within its own VM, the new platform has a sin-
gle GC service process that serves all running VMs. The GC
service unifies interactions between nonadjacent system lay-
ers (i.e., the low-level OS power manager) and GC tasks. The
service has OS-like access, capable of scanning and collect-
ing per-process VM heaps remotely and gathering statistics
about all the running VMs in the system, including process
priority, allocation rate, and heap demographics. This allows
for fine-grained control over the GC tasks being executed,
and their scheduling, compared to just coarsely signaling in-
dividual VMs to start GC collections.

We illustrate the power of combining vertical cross-
layered heuristics to achieve efficient heap decisions such
as compaction, collection, and trimming. GC service effi-
ciency is not limited to local heuristics, resulting in better
utilization of system resources based on the workload. We
make the following contributions:

• We identify a unique opportunity for optimization on
mobile systems by coordinating and orchestrating all the
concurrently running VMs.
• We design a global service that collects statistics from all

VMs, and we implement a prototype that centralizes GC,
including global GC heuristics that optimize memory
usage across VMs and the actual collection tasks.
• We develop, implement, and evaluate, in vivo, a com-

plete running mobile platform based on Android that dis-
tributes GC sub-tasks between applications and an OS-
like control unit. These heuristics include: heap growth
management, compaction, trimming, context-aware task-
killing mechanisms, and energy optimization.

2. Background
Mobile platforms employ aggressive power management
of sub-systems to improve battery life and to control ther-
mal conditions since these platforms only have passive heat
sinks, and for example, their CPUs cannot run continuously
at full speed. The governor [11] collects run-time statis-
tics at time t (e.g., work load work(t) and core tempera-
ture) and then applies complex heuristics—dynamic voltage
and frequency scaling (DVFS)—to meet optimization cri-
teria [15, 35, 46]. Smartphone energy profiling is a tedious
task because it requires (i) hardware access to device compo-
nents, and (ii) an understanding of the distribution of power
among the device components. A common methodology
is to use external instruments to measure the total energy
consumed by the device [12, 47, 54], and then extract the

Apps

Framework

Android
Runtime

System
Daemons

Kernel

VMiVMi
VMi

GCDaemon notify
threshold

private
heap

proxy

GCService

governor CPU driverFreq

work(t) LMKProc stats/RAM

threadn

governor CPU driverFreq

work(t) LMKProc stats/RAM

cap
frequency

VMiVMi VMi

GCAgent notify
threshold

heap

threadn

mmap

handshake

read
stats

post
request

workerk

pull
request

Async task queue

1 2

3

4

5

AppA AppB AppC

locationnotification locationnotification

AppA AppB AppC

(a) Default Android stack (b) GC service system overview: new components are shaded

Figure 1: Comparing the default Android and GC service stacks

contributions of subcomponents based on a defined power
model [49, 61].
Android. Figure 1a lists the different layers of the Android
software stack: (i) A modified Linux kernel that provides
drivers, shared memory, and interprocess communication;
(ii) Native libraries and system daemons (i.e., bionic, and
thermal engines); (iii) Android run-time environment, which
is the core VM library that hosts an app; (iv) The framework
layer that provides services to apps; and (v) The application
layer that compromises the third party applications installed
by the user and the native applications (i.e., browser).
App Isolation. Each app runs in its own VM instance
within a single OS process. Isolated processes communi-
cate through RPC using the Android binder driver which is
implemented in kernel space and is optimized to avoid copy-
ing. To guarantee application responsiveness, the VM as-
signs higher priorities to user interface threads, while back-
ground threads are given lower priorities. In addition, An-
droid moves all low-priority background threads to Linux
control groups (cgroups), where they are limited to a small
percentage of CPU time. This ensures that the foreground
app does not starve, regardless of the number of running
background tasks. When an app starts, it skips some ini-
tialization steps by inheriting resources created by the zy-
gote template process. The zygote reduces app startup time
and global memory usage by keeping common resources in
copy-on-write memory. Once the process is forked, a per-
app garbage collector manages the VM private heap.

Until Android 4.4, Android relied upon the Dalvik VM,
optimized for memory-constrained devices. Dalvik uses a
register-based byte-code format called Dalvik Executable
(DEX) [28, 31] through a just-in-time (JIT) compiler. The
Android Run-Time (ART) replaced Dalvik’s JIT compiler
with ahead-of-time compilation. At app installation time,
ART compiles DEX files into native code.
Memory Management. There are four main categories of
Android physical memory usage: OS file caches, device I/O

buffer, kernel memory, and process VMs. The VM pages
constitute the largest portion of memory usage [41]. Each
Android per-app GC runs in its own background daemon
thread (GC daemon) concurrently with the application-level
threads (mutators). The default Android GC operates as a
concurrent mark-sweep collector, tracing references from
roots that include both thread stacks and other global vari-
ables, marking reachable objects via those references, and
then marking reachable objects recursively via references
stored in those objects. When all of the reachable objects
have been marked, the collector sweeps the heap to free the
unmarked objects.

ART introduced several enhancements to Dalvik GC, in-
cluding a pseudo-generational sticky garbage collector to
deal with short-lived objects [44, 56]. This sticky mark-
sweep collector is a non-moving generational GC that fo-
cuses its effort on separately collecting young objects by
(logically) segregating them from older objects. This offers
improved locality and shorter collection cycles for minor
collections of the young space. Both of the Android VMs
(ART & Dalvik) use several heuristics to decide how to bal-
ance heap growth with collector work, the mode of each
collection cycle (minor vs. major), and whether to trim the
heap (returning unused pages to the system). The target heap
utilization ratio controls heap size. If live data exceeds (or
falls below) this factor of the heap size (plus or minus some
threshold), then the collector reacts by increasing (or de-
creasing) the size of the available heap. After any successful
allocation, if the allocation exceeds the heap threshold, the
mutator signals the GC daemon to start a new background
GC cycle if it is not already active.
Low-memory Killer (LMK). Android apps are designed to
tolerate random restarts. We refer to the app currently on the
screen and running as foreground. Otherwise, the app is la-
beled background [30]. When a user navigates away from
an Android app, the process stays in the memory in order
to reduce the start-up overhead when the application is used

again. To clean up the physical memory, Android uses a con-
trolled LMK, which kills processes when the available free
memory is close to being exhausted. LMK allows specify-
ing a set of out-of-memory (OOM) thresholds to decide on
which and how many processes to kill [25].

3. Design and Architecture
We introduce a service that runs as a separate VM process
and collects information (i.e., RAM consumed and work-
load) from running apps and run-time services. Building on
this central service that runs as its own separate Linux pro-
cess, we design a GC service component that maps the VM
heaps of all running apps into the central service and car-
ries out all GC decisions using global (not local) heuristics.
Figure 1b shows the high-level interaction between the com-
ponents of our system:

1. The server process maps the client heap into its private
virtual address space and manages all coordination and
synchronization with other system layers—e.g., power
managers. The server has a pool of worker threads to
support parallel collection tasks. A single worker han-
dles a remote GC task on the client’s heap. The worker
coordinates with the client and performs concurrent GC
phases—i.e., recursive marking and sweeping.

2. The client VM that hosts the app execution is an isolated
Linux process. Instead of making independent GC deci-
sions, a client yields GC policy decisions to the server,
including (i) heap growth management, (ii) GC triggers,
and (iii) the type of GC operation to perform (e.g., trim-
ming or compaction). Each client coordinates with the
server using a dedicated GC agent daemon.

3. A GC-aware governor that works in tandem with the
server to improve power consumption and performance
according to the current workload, taking special mea-
sures during GC activity.

4. A platform-specific proxy that abstracts the mechanism
of sharing the client’s heap with the server.

5. An asynchronous task queue that allows the GC agent to
post requests to the GC service.

When the allocation exceeds the heap limit (hLimit), the
mutator signals the GC agent, which posts a new GC request,
if it does not already have one pending. A worker thread sig-
nals the agent to start a collection cycle. The agent performs
the initial mark and the remark pauses. The worker thread
performs concurrent tracing of the reachable object graph,
and then performs a concurrent sweeping phase in which the
objects identified as unreachable are collected. During con-
current phases, all the mutators are resumed except the agent
that waits for the completion of the phase.

3.1 Global Collector and Energy Optimization
In theory, an optimal GC policy leads to optimal GC schedul-
ing. The latter is the trace of GC events throughout the pro-
gram execution that produces the lowest GC cost [36]. How-

ever, with the introduction of other system components into
the cost equation (i.e., scheduling and CPU throttling), the
GC scheduling can be tuned by hiding expensive GC op-
erations inside of small, otherwise unused idle portions of
application execution, which results in better overall execu-
tion [23]. For mobile devices, tuning the GC implementation
to meet performance and power goals is exceptionally diffi-
cult, because per-app GC cost is defined as a function of sev-
eral controls [23, 34] such as: (i) the power manager reacting
to CPU idle-time during memory-bound GC phases; (ii) VM
configurations, GC algorithm and the heuristics controlling
the heap size; and (iii) the workload and memory stress at
run time.

In a tracing GC, the collector task is inherently memory
bound. Not only the collector is subject to total memory
bandwidth, but the mutators are more likely to stall due
to stop-the-world phases, and when they are waiting for
the collector to finish so they can allocate. Therefore, the
mutators are unlikely to make full use of fast cores. Thus,
our goal is to tune the GC using the following mechanisms:

1. The prioritization of GC tasks across dozens of simul-
taneously running VMs needs fine-grained control over
scheduling. Put another way, given a set of parallel VMs
and a global state of execution, define the selection crite-
ria to pick a VM and the GC task to apply next.

2. The reduction of GC energy cost while allowing for bet-
ter responsiveness and throughput. This can be achieved
either (i) by coordinating between the system scheduler
and the VM [23], or (ii) by capping the frequency of the
core during GC phases [34].

Tuning the GC across all the VMs cannot be achieved with
each VM independently sending information to the power
manager. Therefore, the clients need to offload GC manage-
ment to a single process. The GC service unifies the interface
between the system components and the concurrent VMs. In
this way, coordination between the power manager and a sin-
gle process is feasible and practical.

Having a single process handle the launch of GC tasks
allows for more fine-grained control over estimating the
memory management overhead and coordinating with other
system components. At a high level, the GC service aims to
make the most effective decision in a specific situation. The
GC service does not (necessarily) collect the heap of the app
that is currently running (and is likely requesting memory),
but the heap that contains the most garbage. Executing GC
tasks by a single process also reduces the code footprint
and code cache pressure from individual threads that are
running per-app GC and from negative interactions with the
scheduler.

3.2 Global GC Service vs. Global GC Policy
Some studies investigate auto-tuning of the GC policy lo-
cally per single VM [55, 57]. Yet, to date there is no pub-
lished work on a global tuning methodology that combines

both the GC configuration policy and the global scheduling
decisions on the system. Our service allows holistic and cen-
tral control of (i) detecting conflicts and overlaps between
heuristics of components scattered across non-adjacent lay-
ers of the system stack, (ii) removing redundant function-
ality that exists between non-adjacent software layers, and
(iii) identifying unhandled scenarios that result from dis-
tributing the memory tuning task across several libraries.

We augment the GC service with the following exten-
sions: (i) global device stats—i.e., available RAM and work-
load, (ii) per-process system stats, (iii) per-heap stats such
as heap variables, fragment distribution, and allocation rate,
and (iv) the ability to perform GC phases remotely on be-
half of other processes. With global system information, the
centralized GC service makes more efficient decisions such
as trimming the heap that contains the highest fragmentation
first, delaying collections when unused memory is available,
and even adjusting the heap thresholds based on allocation
rates rather than static thresholds.

3.3 Performance
Our system aims at reducing the latency of app responses
while assuring better performance and longer (battery) life-
times. However, with a centralized GC service, a slow mes-
saging mechanism can introduce a new bottleneck. In order
to concurrently process multiple GC requests each worker
can independently handle a GC task in parallel with other
workers. A worker pulls the next pending request from the
queue once it finalizes a GC task.
Pause Times. GC implementation affects responsiveness
as observed by users. GC pauses can prevent threads that ser-
vice user interface tasks from giving timely responses to user
input events. Humans typically perceive interaction pauses
greater than 50 ms [24], so any greater pause is likely to be
noticed by users. A mutator is interrupted by the GC (i) dur-
ing the initial marking and remarking phases, and (ii) when
the mutator executes an explicit GC (System.gc()). Ex-
plicit GC accounts for the worst case pause. We tune the
mutator utilization not just by shortening the length of pause
phases, but also by preventing the client’s mutators from per-
forming GC tasks. All mutators offload all GC work to the
agent which eliminates the worst case pause scenario. When
an allocation request exceeds the hLimit, or fails, the mutator
forces allocation (by resizing the heap) and signals the agent
before continuing. When a mutator executes an explicit GC
call, it simply signals the agent.
Communication Mechanism. The coordination between
the agent and the worker implies an inter-process communi-
cation (IPC) between the client and the server. One possible
shortcoming of poor IPC design is frequent process context
switching, which is known to have high overhead compared
to thread switching [22, 43]. Thus, the performance benefit
of the GC service has to be greater than the IPC overhead.
Our goal is to mitigate the overhead of interprocess com-

munication as much as possible by: (i) scheduling the GC
triggers to balance the tension between the frequency of GC,
heap size, and IPC overhead [7, 10, 33]; and (ii) designing
a robust asynchronous messaging mechanism to allow for a
fast handshake between the worker and the agent threads.

The GC service processes the requests based on prior-
ity queues, which provides flexibility to support various
heuristics—i.e., processing the foreground application at
higher priority. The longest duration of time a request stays
pending can be represented as a function

latency(IPC) = f(υ, η, ρ) (1)

where η is the number of requests with higher priority, υ
is the total time overhead in context switching, and ρ is the
duration spent processing one request.

During GC, the agent and worker threads execute GC
phases synchronously. Thus, it is conceivable that both
threads cannot be scheduled concurrently on different cores.
Because the OS scheduler does not consider shared re-
sources, some scheduling decision may not be optimal for
multithreaded execution. We feed this information to the
scheduler by pinning both threads to a single core until the
end of the GC cycle. Forcing the two threads to run on the
same core corrects scheduler decisions and prevents thread
preemption. This results in better cache performance and
locality [9, 59].

3.4 Design Considerations
There are many challenges that need to be addressed when
implementing a centralized GC service.
Portability. Placing the GC service in the VM layer en-
hances portability while keeping the OS unmodified. The
communication model between the GC service and the
clients must not be platform-specific.
Reliability. It is essential that the GC service provides a
uniform mechanism for managing app life cycles in isola-
tion from each other [38]. Therefore, it must be feasible to
change the status of a VM without affecting the remain-
ing VMs. This requires separating the internal structure of
a client’s VM (i.e., static objects). In addition, it is essential
that failures in the GC service do not bring the system down.

The stock Android run-time environment restarts apps
when they become unresponsive. Like all other Android
services, the GC service is designed to restart after crashing.
When the GC service is offline, clients perform GC locally
until the server is back online. However, the service may halt
in the middle of a critical section while locking the client’s
heap. In this scenario, a client will be restarted for being
unresponsive.
Security. Since Android allows execution of native code,
serious security issues arise with previous approaches like
Multi-tasking VMs (MVMs) that allow a single VM to run
multiple applications [21, 60]. Such an approach consists of
sharing one heap across all running apps, making the sys-

tem highly vulnerable to security exploits that have low-
level access to memory. Our design, on the other hand, of-
fers a secure approach where the code of the central GC
service is trusted, and each VM has access to only its own
local heap. In the GC service the heap layout must not be
identical across all the VMs (including the zygote) to sup-
port the shuffling introduced by techniques such as address
space layout randomization (ASLR). This reduces the risk of
memory attacks. Also, we avoid reusing GC internal struc-
tures across different VMs—i.e., mark-bitmap and mark-
stack are exclusive to a single client.

4. Implementation
Our prototype GC service implementation is based on An-
droid 4.4 (KitKat) ART. KitKat is the latest release that runs
on our development hardware platform and uses Linux ker-
nel 3.4. We start our modification based on the open-source
SDK and the default configuration. We extend the Android
VM with 4K LoC to implement the GC service and the GC
agent. We also extend the kernel layer with a few hundred
lines of code to allow direct access to run-time statistics.

4.1 System Startup and IPC Support
The system boot process follows the standard steps of load-
ing hardware-dependent components and initializing subsys-
tems and drivers. After starting the kernel, the proxy starts as
a native service. Following the creation of native daemons
the zygote starts by preloading common Java classes and
resources. The last step of zygote’s initialization is to fork
the GC service, which initializes the shared memory regions
and the pool of worker threads. The server has a singleton
listener daemon that fetches tasks from the task queues and
inserts them into local queues to be handled by the workers.
Occasionally, the server updates the global statistics to adjust
its decisions. There are three types of client requests: (i) Reg-
istration: A new client VM sends a request, including the
VM process id (PID), the continuous space addresses, and
the file descriptor to memory region; (ii) Shutdown: A hook
that is executed during the client VM shutdown sequence;
and (iii) Collection: The agent requests a GC when the al-
location exceeds the hLimit threshold, or when a mutator
executes an explicit GC call.

When the zygote receives a request to start an app, it forks
itself and launches the new app. The new client VM creates
the agent daemon that sends a registration request to the
server. A successful registration shares the client’s allocation
space with the GC service. A heap collection is triggered
when a mutator signals the agent, which in turn forwards a
request to the GC service. The agent waits for a message
from the server that defines actions to be executed (i.e., GC
or trimming).

The shared regions are created using Android shared
memory (ashmem) that uses reference-counted virtual mem-
ory, assuring that a shared region is automatically reclaimed

private memoryshared memory

allocation
live bitmap
mark bitmap
stats

zygote
live bitmap
mark bitmap
stats

Spaces

GC type
heuristics
GC policy

heap growth

mark stack
heap meta

image live bitmap
Spaces

stacks allocation

card tables image-zygote
zygote-alloc

heap meta
interntables

Figure 2: The shared heap layout in the GC service

when all file descriptors referring to it are closed. Thus, it
prevents memory leaks caused by a process crash or by soft-
ware bugs. Also, ashmem assures that a failure on the server
side will not remove the client’s heap.

The IPC messages and signals are implemented using fu-
texes [26] to synchronize in user space. The server utilizes
a pool of work-stealing threads to reduce the overhead of
scheduling. Although Android provides the binder as an IPC
mechanism, we implement our communication model on top
of shared memory for the following reasons: (i) Binder pro-
vides synchronous calling, which increases the possibility of
context switching between the sender and the receiver, lead-
ing to performance degradation [22, 43]; (ii) Binder restricts
the maximum number of calls that can be handled concur-
rently (currently 16); and (iii) Shared memory makes the
system portable and independent of platform-specific fea-
tures.

4.2 Client Memory Management
The client VM starts by creating a GC agent daemon, which
registers the VM with the service. Thus, a subset of heap
metadata, zygote, and allocation spaces become accessible
to the service. Figure 2 shows the shared memory layout
in the new system. The heap layout of a client VM com-
prises the following main blocks: (i) image-space: an im-
mutable contiguous memory region created from an image
file, (ii) zygote-space: a contiguous memory space inherited
from the zygote process (the zygote space is occasionally
collected during full GC events), (iii) allocation-space: the
active contiguous space used by the app. For each individual
space, the mark bits are stored in two separate bitmap ta-
bles (live and mark) to allow for concurrent progress of the
mutator while the collector is tracing the objects. Concurrent
marking is supported by a write barrier that records dirty ob-
jects that have been modified by mutators in a global card-
table. Inter-space references are stored in internal tables to
reduce the overhead of tracing the reachable objects in the
allocation space (active). The collector stores the marked ob-
jects that need to be scanned during the concurrent tracing in
a mark stack.

In the absence of the GC service, the client activates
sticky collections to reduce the overhead of the GC. The
agent uses an allocation stack to keep track of the objects

Algorithm 1: Server-side concurrent mark sweep

1: procedure GARBAGECOLLECT /* worker thread */
2: preparePhase()
3: A sync gcPhase←markRoot
4: end sync (gcPhase = recursiveMark) D

5: function RECURSIVEMARK(mark-bitmap, mark-stack)
6: delayedList← empty subset of mark-stack
7: while mark-stack 6= delayedList do
8: obj← mark-stack.pop()
9: if ¬ isMarked(mark-bitmap, obj) then

10: setMarked(mark-bitmap, obj)
11: for fld← obj.fields do
12: ref ← *fld
13: if ref ∈ allocationSpace then
14: mark-stack.push(ref)
15: else /* ref ∈ private memory */
16: delayedList.add(ref)
17: E sync gcPhase←remark
18: end sync (gcPhase = reclaim) H

19: function SWEEPALLOCSPACE(mark-bitmap, live-bitmap)
20: for i← 1, mark-bitmap.length() do
21: if mark-bitmap[i] &¬(live-bitmap[i]) then
22: free(getAddress(mark-bitmap, i)
23: adjustHeapLimit()
24: I Async gcPhase← finalize
25: finishPhase()

Algorithm 2: Client-side concurrent mark sweep

1: procedure GARBAGECOLLECT /* GC agent */
2: sync gcPhase
3: end sync (gcPhase = markRoot) B

4: function INITIALMARK(mark-bitmap, live-bitmap)
5: StopTheWorld();
6: mark-ThreadStack()
7: mark-InternalTables()
8: ResumeTheWorld()
9: scanRoots()

10: mark-InterSpaceReferences()
11: C sync gcPhase←recursiveMark
12: end sync (gcPhase = remark) F

13: StopTheWorld();
14: function HANDLEDIRTY
15: while ¬(mark-stack.isEmpty()) do
16: obj← mark-stack.pop()
17: if ¬(isMarked(mark-bitmap, obj)) then
18: setMarked(mark-bitmap, obj)
19: for fld← obj.fields do
20: mark-stack.push(*fld)
21: swap(mark-bitmap, live-bitmap)
22: ResumeTheWorld()
23: G sync gcPhase←reclaim
24: end sync (gcPhase = finalize) I

25: finalize();

that were allocated since the last GC. The sticky mark-sweep
does not adjust the heap size after it completes a collection.

4.2.1 Concurrent Mark Sweep
Algorithms 1 and 2 show how the collection is handled in
the GC service. (A) The server notifies the GC agent to
start a new collection cycle. (B) The app-local agent first
marks the heap roots including those from thread stacks and
globals. (C) The agent extends the root set by adding the
references from immuned spaces (i.e., zygote and image) to
the allocation space). (D) The shared mark-bitmap is then
used by the server to mark the reachable objects recursively.
(E) The worker yields control to the agent after all objects in
allocation stack are scanned. (F) The agent starts the remark
phase. It stops the world and revisits any remaining dirty
objects pushed on the mark-stack due to concurrent updates
by the client application threads (mutators). (G) The agent
swaps the bitmap tables, resumes the mutators, and signals
the worker. (H) The worker sweeps the space to create the
list of free objects, computes fragment distributions, and
calculates the new size of the heap. (I) Finally, the worker
finalizes the GC cycle concurrently while the agent enforces
the new heap threshold.

Since handling the dirty objects requires pausing all
threads, we avoid IPC between the agent and the server to
assure that the app threads are resumed in a short period of
time. On the server side the collector recalculates reference
fields based on the base address of the mapped heap. The
server scans the reachable objects except for a small set al-

located in the client’s private memory range. If the adjusted
address does not belong to the mapped range (shared space),
the server adds the object to a “delayed” list. The GC agent
processes the delayed list as a subset of the dirty objects.

4.2.2 Heap Size Management
Mobile apps often exhibit an execution pattern that makes
static GC policies ineffective—e.g., music players and games
tend to allocate large chunks of data at the beginning of each
phase (track/level), causing a spike in the allocation rate and
the heap size, followed by minutes with little allocation. Our
profiling data shows clear traces of this behavior where the
heap oscillates indefinitely.

We address this challenge by avoiding a static threshold.
Algorithm 3 illustrates the steps followed by the GC service
to set the heap limit for the next GC cycle. (i) an app in the
start-up phase (nursery) grows the heap more aggressively;
(ii) app priority is a factor for allowed heap growth, (iii) for
each VM, the GC service stores allocation and resizing in-
formation of the last 20 events to adjust to memory usage
dynamically (line 24). The service uses the memory alloca-
tion rates to auto-adjust the heap growth policy dynamically.
This allows for identifying the steady state of the heap vol-
ume in smooth steps that eliminate inefficient heap bounds.
The GC service updates global statistics when a new app is
created, or when an important app changes status, possibly
being replaced by another app.

Algorithm 3: Heap growth procedure following a GC task

1: procedure ADJUSTHEAPLIMIT
2: Pri← App priority
3: updateFlag← False
4: resizeFactor← sizeFactors[Pri]
5: if App.isNew() then
6: App.setLabel(nursery)
7: resizeFactor← sizeFactors[nursery]
8: updateFlag← True
9: else

10: if App.label = nursey then
11: if ¬(promote(App)) then
12: resizeFactor← sizeFactors[nursey]
13: else
14: updateFlag← True
15: App.setLabel(tenure)
16: else
17: Priprev ← App priority from previous GC
18: if Pri 6= Priprev then
19: updateFlag← True
20: ipcDelay← latency(IPC) /* Equation (1) */
21: allocRate← (hLimit − heapSizeprev)/(∆ time)
22: w ← heapSize ∗ (resizeFactor + 1)
23: + allocRate ∗ ipcDelay
24: hLimit← sample(heaplimit, w)
25: if updateFlag then
26: updateGlobalState()

4.2.3 Extension: Compaction vs. Trimming
Due to the scarcity of available memory, following a GC cy-
cle the Android VM occasionally scans the heap spaces, re-
leasing empty pages to the system. This trimming event is
executed on lower priority VMs where the live set occupa-
tion falls below a given threshold. This periodic trimming
comes at a high price with long-running VMs oscillating
indefinitely around the triggering threshold. If the system
needs more memory, Android simply kills inactive apps to
release their memory pages. The efficiency of trimming de-
pends on the distribution of heap fragments. Note that ART
(Android 4.4) does not compact the heap, so any remain-
ing object on a page reduces trimming effectiveness. Know-
ing that the space leakage in a tracing collector grows much
faster than linearly with a heap size [52], it is intuitive to see
that a live object occupying just few bytes can prevent the
release of a full memory page.

In order to tackle this challenge, we implement a vari-
ant of the GC service with compaction capability called
GCS-Compact. The GCS-Compact keeps statistics about
empty slots following each full GC. When memory becomes
scarce, the GC service lazily picks the VM with the highest
fragmentation score in the list of low priority VMs. Once
picked, the server signals the GC agent to perform a heap
compaction. For idle processes, taking advantage of the fact
that the VM is already inactive, the GCS-Compact performs
the compaction in an offline mode.

It is important to distinguish between the remote com-
paction mechanism in the GC service and having a central-
ized GC manager that signals a specific VM to release the
unused pages. In the latter case, each VM needs to perform
the compaction task, implying that the process changes its
state from inactive to running. Heap compaction also re-
quires significant per-VM overhead to store the forwarding
references (space overhead) and to synchronize attempts to
access moved objects [6, 19]. With offline compaction, the
server process, which is already running, (i) avoids signaling
an inactive process and (ii) omits the need for forwarding
references.

4.3 Energy Optimization
The ondemand governor controls the energy consumption
of the multicore processor based on the observed workload.
The governor collects run-time statistics and applies heuris-
tics in an attempt to meet optimization criteria. We integrate
the GC service with the CPU power driver, making the gov-
ernor aware of GC activities (a user-space activity). This al-
lows the governor policy to account for distinct phases of
GC behavior in the application workload. By monitoring
the workload the GC service makes informed decisions to
schedule background tasks with lower GC costs [23].

When the workload across the online cores exceeds a
threshold, then the cores ramp up to optimal_freq that is
set to less than the maximum frequency. If the optimal_freq
is sufficient to handle the workload, the cores will go back
to idle. Otherwise, the cores ramp up to the maximum fre-
quency. At the beginning of a GC cycle, the modified onde-
mand governor caps the maximum frequency of the core on
which the collector daemon is scheduled. We calculate the
capped frequency as the median between the current core
frequency and the governor optimal_freq. Following the col-
lection cycle, the governor is free to adjust the frequency
according to the observed workload and the default settings
(see Table 1). GC service coordination with power man-
agers differs from local power optimizations that may in-
herit conflicting GC scheduling decisions across concurrent
VMs [34].

5. Experimental Results
Our centralized framework cuts across multiple layers of
the Android 4.4.2 “KitKat” software stack and touches both
hardware and operating system aspects. For each experi-
ment, we consider the following main runtime contexts to
assess the efficiency of GC decisions on apps that compete
on scarce resources:

ART The app runs in foreground mode on the default An-
droid ART.

ART-Bgd The app runs in background mode on Android
ART. By default, ART assigns lower priority to the app,
causing the GC to increase the memory constraints.

Table 1: Experimental environment specifications

H
ar

dw
ar

e

Architecture: Qualcomm’s Snapdragon S4 SoC
CPU: quad-core 2.3GHz Krait

Memory: 2GiB
Cache: 4KiB + 4KiB direct mapped L0

16KiB + 16KiB 4-way set associative L1
2MiB 8-way set associative L2

So
ft

w
ar

e

VM parameter ondemand parameter

start size: 8 MiB optimal freq: 0.96 GHz
size: 256 MiB sampling rate: 50 ms

targetUtil: 8 MiB scaling max freq: 2.1GHz
LOS threshold: 12 KiB scaling min freq: 0.3 GHz
trim threshold: 75 % sync freq: 0.96 GHz

LMK minfree: 12288; 15360; 18432; 2150; 24576; 30720 (pages)

M
ic

ro
ar

ch
ite

ct
ur

e

Level Size Miss Lat. Line Replace

TLB
1 32 4.27 ns – –
2 128 33.39ns – –

Cache
1 16 KiB 3.21ns 64B 3.28ns
2 2 MiB 10.03ns 128B 10.63ns

CPU/L1 1.85ns Proc Ctx. 43.41µs Thread Ctx. 9.56µs

GCService The app runs in foreground mode on a system
that deploys GC as a service.

GCService-Bgd The app runs in background mode on GC-
Service. The heap growth of the app is lowered only if
the global memory is scarce.

GCS-Compact The app runs on GCService with com-
paction enabled.

For all applications, we use the Monkeyrunner tool to au-
tomate user inputs [29]. We use the APQ8074 DragonBoard

TM

Development Kit with specifications described in Table 1.

5.1 Methodology and Benchmarking
For each metric we describe the techniques and controls
used to obtain the results. We also characterize a set of
applications used in the experiments.
Consistent Lightweight Profiling. We have instrumented
the Dalvik/ART VMs and the kernel to record statistics on
demand. To avoid perturbing mutators the profiling dae-
mon does not synchronize with them. To avoid environmen-
tal perturbation, we run experiments that are sensitive to
time and scheduling with the thermal engine disabled. We
note that the thermal engine controls the CPU frequency, in-
creasing non-determinism of the experiments—i.e., execu-
tion time and power consumption will change depending on
the temperature. The VM profiler runs as a C-coded dae-
mon thread inside ART and Dalvik. This daemon only runs
when we are collecting execution statistics such as perfor-
mance counters or GC events and not for measurements that
are sensitive to timing or scheduling such as total execution
time and OS context switching. The data from this daemon
are not used for our heuristics, but to evaluate the system
in-vivo. The profiler daemon does not synchronize with app
threads to avoid perturbing app execution.

Table 2: Workload description

xalan: A multithreaded XSLT processor for transforming
XML documents into HTML, or text which is not sup-
ported by default on Android platforms [8].

lusearch: A multithreaded text search over a set of input files [8].
sqlite: A multithreaded app that executes, in memory, a num-

ber of transactions against SQL queries using Android
SQLite [8].

JSON: A multithreaded app that serializes a set of JSON files
to Java objects. At least 12% of Android apps use
JSON libraries [3].

SVG: A single threaded parser based on AndroidSVG [2].

App store: Quadrant, Pandora, AngryBirds, and Spotify

�

��

��

��

��

�� �� �� ��� ��� ��� �� �� �� �� ��� ���

��
��
��
��
�
��
��
��
�
��
�

������ ����

�������
����

����������
��������

���
��������

�����

�

���

���

����

����

����

��
��
��

��
��
��
�

Figure 3: Object size histograms and loaded classes

Workload. Mobile apps are characterized by their event
based behavior. There are many sources of non-determinism
at the application level, including interference caused by
shared data for concurrent tasks, tasks racing to access
peripheral devices, and interference from scheduled back-
ground tasks. The goal is to define a benchmark suite that is
used to optimize mobile environments, considering metrics
that are relevant to user interactions and metrics that sim-
plify correlation of underlying platform events across the
layers (e.g., hardware, OS, runtime, and application). Ta-
ble 2 lists a set of applications that wrap popular Android
libraries, which allow various workload sizes and number of
iterations.

We profile the object size in a perfectly compacted heap
(64KiB). Figure 3 plots the percentage of objects (y-axis) in
each object size (x-axis) that the app allocates. The number
of loaded classes reflect the variance in object types.
Energy Profiling. GC energy consumption exhibits non-
linear relationship with resource utilization—i.e., CPU and
memory cycles. Therefore, a utilization-based power model
is not suitable for our experiments [61]. Instead, we use an
event-based model [5, 49] that captures the relationship be-
tween GC events and total power consumption of the device.
We measure the total physical energy consumed during the
app execution using a hall-effect linear current sensor [1],
and we read the output voltage using a National Instruments
NI-6009 data acquisition device [48]. We correlate the re-

Po
we

r i
nc

re
as

e
as

%

 o
f s

te
ad

y
st

at
e

0

30

60

90

120

Time in seconds
0 0.4 0.7 3.59 4.4 4.96 5.9 6.1 8 9.4

cached-launch bestFit cached
fresh-launch bestFit fresh

No
rm

al
ize

d
Po

we
r

0.5

1.0

1.5

2.0

2.5

Time in seconds starting from !
0 0.23 0.7 1.08 1.34 1.62 1.9 2.13 2.36

Power GC-trim-events UI-trim-events
Steady-State Power

-16
-12

-8
-4
0
4
8

12

lusearch

xalan
sqlite

SVG
JSON

ART-Bgd GCService GCService-Bgd

-16
-12

-8
-4
0
4
8

12

lusearch

xalan
sqlite

SVG
JSON

ART-Bgd GCService GCService-Bgd

lusearch

xalan
sqlite

SVG
JSON

lusearch

xalan
sqlite

SVG
JSON

0

-6

6

12

18

Ex
.T

im
e

%

Energy (smaller is better)Exec. Time (smaller is better)

En
er

gy
 %

0
13
25
38
50

GCService ondemand

0
15
30
45
60

core frequency (GHz)
0 0.42 0.73 0.96 1.19 1.5 1.73 2.15

xalan
angry birds

fra
ct

io
n

of
 ti

m
e

(%
)

Figure 4: Power trends when launching apps for first time
(fresh) vs. invoking background apps (cached)

sults and the configurations of several layers considering dif-
ferent controls. Once the app starts execution, the profiler
reads the voltage drop across the device at a sample rate of 2
kS/s.
Pause Times. The responsiveness of embedded systems
was thoroughly studied and evaluated by estimating the
Worst-Case Execution Time (WCET) of individual tasks
leading to the existence of several commercial tools and
research prototypes [58]. However, worst case and average
mutator pause times do not adequately characterize the im-
pact of GC on responsiveness because of the complexity of
the system stacks. Thus, we use minimum mutator utiliza-
tion (MMU) [20, 39, 51] over a range of time intervals. For
each individual mutator we gather the pauses during the fol-
lowing events: (i) safepoint pauses, when a mutator stops in
response to a suspension request (e.g., for marking mutator
roots), (ii) foreground pauses, when a mutator performs a
foreground GC cycle, and (iii) concurrent pauses, when a
mutator waits for a concurrent GC cycle to finish.

We compute the MMU for a multithreaded app having a
total execution time T and M mutators m1, . . . ,mM , each
experiencing pi GC pauses δ1, . . . , δpi

, we define MMU for
a window of length w as the MMU (for all mutators) over all
time slices of length w in the execution.

5.2 Energy and Performance Evaluation
Table 1 shows the micro-architectural characteristics of our
platform. The metrics include: TLB, Cache, and process
context switch performance. Although the process context
switching overhead is known to be high compared to thread
switching, our profiling of the scheduling statistics on An-
droid ART and the GC service are indifferent.

The default Android memory system is tuned for single
monolithic applications. First, following a collection, the de-
fault collector iterates through all allocated heap memory
and trims free pages if the app is in the background. This
scenario is inefficient as (i) trimming is executed for ev-
ery collection (as long as the heap utilization is less than
the trimming threshold), leading to diminishing returns for
trimming sparse heaps, (ii) low priority applications with
sparse heaps do not trigger GC and therefore hold on to

Po
we

r i
nc

re
as

e
as

%

 o
f s

te
ad

y
st

at
e

0

30

60

90

120

Time in seconds
0 0.4 0.7 3.59 4.4 4.96 5.9 6.1 8 9.4

cached-launch
bestFit cached
fresh-launch
bestFit fresh

No
rm

al
ize

d
Po

we
r

0.5

1.0

1.5

2.0

2.5

Time in seconds starting from !
0 0.23 0.7 1.08 1.34 1.62 1.9 2.13 2.36

Power GC-trim-events UI-trim-events
Steady-State Power

-16
-12

-8
-4
0
4
8

12

lusearch

xalan
sqlite

SVG
JSON

ART-Bgd GCService GCService-Bgd

-16
-12

-8
-4
0
4
8

12

lusearch

xalan
sqlite

SVG
JSON

ART-Bgd GCService GCService-Bgd

lusearch

xalan
sqlite

SVG
JSON

lusearch

xalan
sqlite

SVG
JSON

0

-6

6

12

18

Ex
.T

im
e

%

Energy (smaller is better)Exec. Time (smaller is better)

En
er

gy
 %

0
13
25
38
50

GCService ondemand

0
15
30
45
60

core frequency (GHz)
0 0.42 0.73 0.96 1.19 1.5 1.73 2.15

xalan
angry birds

fra
ct

io
n

of
 ti

m
e

(%
)

Figure 5: The overall power measured when running Spotify
in the background normalized to the steady state, which
shows the impact of trimming on power consumption

empty pages, and (iii) the trimming decision does not con-
sider global state, leading to unnecessary GC overhead in un-
stressed environments. Second, the default Android LMK is
aggressive, killing apps even when memory is not exhausted
[27]. Process killing is especially problematic for apps that
are designed to run in the background like music players.
Restarting Android Apps. The killing of VM processes
has an implicit penalty overhead when the user reopens the
apps. We measure the average power consumed when we
launch a set of apps for the first time, and we compare the
same power traces when the apps are cached in background.
Figure 4 demonstrates that the re-launch of the apps that
were killed by the LMK has a large impact on energy con-
sumption. In addition, our experiments reveal that local GC
trimming operations increase the power leaks for apps run-
ning in the background.
GC Impact on Low Priority Apps. To analyze the impact
of background GC tasks on energy, we calculate the steady
state power consumption (device is idle) as a baseline, and
we correlate between power measurements and GC events.
Spotify—one of the most popular apps on Android store—
provides a streaming functionality that lets a user listen to
music. Our script launches Spotify, enters the login creden-
tials, and then listens to the default music channel for a spec-
ified amount of time. Once Spotify is launched, the VM pro-
filer collects the memory behavior and heap characteristics
as a function of time in two different settings: (i) Spotify is
the foreground app, and (ii) Spotify is sent to the background
after four minutes. Figure 5 shows a time window (starting at
time φ) obtained when Spotify is pushed to the background,
demonstrating the high cost of heap trimming.
Sending Top App to Background. This experiment as-
sesses the efficiency of GC decisions on low priority apps.
We evaluate GC behavior when the front app is pushed to
the background during a non-stressed state of execution (i.e.,
the device has plenty of free memory). Figure 6 shows the
execution time and power results, with a confidence interval
(5%), of running each benchmark for eight iterations after
a warmup under the two different Android systems. For An-
droid ART, apps running in background exhibit considerable

Po
we

r i
nc

re
as

e
as

%

 o
f s

te
ad

y
st

at
e

0

30

60

90

120

Time in seconds
0 0.4 0.7 3.59 4.4 4.96 5.9 6.1 8 9.4

cached new

No
rm

al
ize

d

0.5

1.0
1.5
2.0

2.5

Time starting from ! (seconds)
0 0.23 0.7 1.08 1.34 1.62 1.9 2.13 2.36

Power
Spotify-trim
UI-Trim
Steady-State

-16
-12

-8
-4
0
4
8

12

lusearch

xalan
sqlite

SVG
JSON

ART-Bgd GCService GCService-Bgd

-16
-12

-8
-4
0
4
8

12

lusearch

xalan
sqlite

SVG
JSON

ART-Bgd GCService GCService-Bgd

lusearch

xalan
sqlite

SVG
JSON

lusearch

xalan
sqlite

SVG
JSON

0

-6

6

12

18

Ex
.T

im
e

%

Energy (smaller is better)Exec. Time (smaller is better)

En
er

gy
 %

0
13
25
38
50

GCService ondemand

0
15
30
45
60

core frequency (GHz)
0 0.42 0.73 0.96 1.19 1.5 1.73 2.15

xalan
angry birds

fra
ct

io
n

of
 ti

m
e

(%
)

Figure 6: App execution time & energy in foreground and
background modes compared to the default execution

worst-case average

lusearch

xalan
sqlite

spotify
SVG

Pandora

JSON
Ang.Birds

javac
jack

0

20

40

60

80

100

Pa
us

e
ti
m

e
(%

)

Figure 7: Worst case and average pauses in GC service as %
of respective ART pauses

trimming, slowing down app execution and leaking more en-
ergy. Our experiments show that trimming phase may span
up to 0.6s. For GCService, the GC does not perform any
trimming, because the memory is not stressed. Note that
sqlite, having bigger live set, exhibits a slow down due to
the heap growth thresholds (see Algorithm 3) used in our
experiments.
Responsiveness. We instrumented the pause segments dur-
ing execution of each thread. For each mutator, the MMU
generates the maximum pause time (the longest window
for which mutator CPU utilization is zero). Figure 7 shows
the average and the maximum value (worst-case) recorded
across all the mutators in the execution. Pandora and An-
grybirds execute several explicit GC calls during execution.
This implies that the app mutator executes the GC cycles, in-
creasing the maximum pause times of that mutator. For the
GC service, delegating GC to the service process avoids GC
delays and context switches between threads of the app. The
second reason for reduced GC pause times is the existence
of an upper bound for the number of objects to be allocated
between two collection cycles. Finally, special handling for
apps in the start-up phase reduces the average time needed
to launch an app.

5.3 Space Analysis
Here we demonstrate how the GC service meets user re-
quirements and executes seamlessly on real devices. With
an increase in memory used by the foreground app, physical
memory may become insufficient. According to the values

of minfree in Table 1, the LMK starts killing processes
from the lowest priority group. Profiling global device re-
sources by running experiments that simulate real world sce-
narios is difficult due to the non-deterministic execution of
mobile platforms—e.g., some random services may fail dur-
ing system start-up, resulting in a variable amount of avail-
able memory for each run.
The GC service Space Overhead. As we describe in Sec-
tion 4.1, the shared regions are created as reference-counted
virtual memory. The metadata overhead is small and bound
by the number of running applications.

Android ART puts new objects in the large object space
(LOS) when its absolute size exceeds a predefined threshold,
“large object threshold”. The current GC service implemen-
tation limits the heap to contiguous memory regions, caus-
ing slightly more overhead when scanning the heap. Figure 3
shows that few object allocations would be affected by dis-
abling the LOS.
Sequential App Execution and Compaction. Here, we
compare between the compactor variant of the GC ser-
vice, GCS-Compact, and the default Android system. This
benchmark launches several apps, switching between them
by pressing the home button. When an app Ai is brought
back to the foreground it (i) may have been killed, trigger-
ing a fresh start, or (ii) it is still running, refreshing exist-
ing pages. In both cases, switching to Ai increases memory
pressure. Occasionally, Android responds to this increase by
killing processes from the lowest priority group to release
their memory. Throughout execution, the system running
Android ART kills 27 processes including the Browser and
BBCNews-Service. The GCS-Compact, on the other hand,
reduces the number of killed processes to only 14–19 (de-
pending on the individual run) without coordinating with the
Android runtime manager.

Figure 8 shows the variation of memory through the se-
quence of events. The stacked bars indicate the total mem-
ory used for each app process at a given point of time. Since
we do not have precise control on the number of processes
running at the beginning of the experiment, we present the
different memory curves of the GCS-Compact and Android
ART. The service (the right column) reserves more mem-
ory for the foreground app as a result of the heuristics that
allow the high priority apps to consume more memory. How-
ever, the service is more effective in releasing memory from
apps running in the background by executing compaction
followed by trimming.

Figure 9 shows the number of trims performed by the
apps (excluding System processes). Android ART per-
forms fewer trimming operations on a limited set of apps
compared to the GCS-Compact. Therefore, the default An-
droid ART tends to kill more apps as a result of not reclaim-
ing memory from inactive apps.
The Impact of Growth Policies on App. Users flag apps
as battery and memory drainers when they cause issues on

spotify dacapo BBCNews BBCForks 3DBench Vellamo VellamoForks
Antutu Quadrant JSON SVG AngryBirds FreeRAM FreeRAMSrvc

Time (S)

LM
K

74 480 798 1200 1490 2114 2142 2186 2235 2283

Spotify

da
ca
po

B
B
C
N
ew
s 3DBench Vellamo Antutu

Q
ua
dr
an
t JSON SVG AngryBirds Vellamo

100

200

300

400

500

600

700

800

M
e
m

o
ry

 i
n

 M
B

Figure 8: Memory stats vs. time in seconds: Stacked bars are the total apps’ memory in ART (left) and the GCS-Compact
(right); available RAM (FreeRAM/Srvc); the LMK range; and the current foreground app (vertical guides)

SystemUI Media Phone Latin Spotify
Antutu dacapo 3DBench AngryBirds SVG
BBCForks JSON Vellamo Quadrant Other

11

7

1

1

1

1

1

1

15

4

1

7 1 2 1111 4 1 15

Baseline

GCS-
Compact

Trims 10 20 30 40 50

Figure 9: Trim counts per app throughout the execution time

the device. This benchmark analyzes the memory behavior
of Spotify—frequently flagged by users as a drain on the
battery [4]—that leads to the power leaks in Figure 5. As
a foreground app, Spotify executes 58 concurrent garbage
collections. These GC events consume up to 7% of the total
app CPU cycles excluding idle cycles (measured using hard-
ware performance counters). In the background experiment,
Spotify executes 60 concurrent collections. However, listen-
ing for 5 minutes of music triggers 8 trimming operations in
the background. This increases the GC overhead from 7%
to 10% of the total CPU cycles. Note that Spotify gets less
CPU slots when it falls to the background based on Android
scheduling policies.

To explain the high frequency of trimming operations,
we profile heap variables and the distribution of free slots
following each concurrent cycle. The results reveal that trim
operations are not effective, because the gaps after collecting
small size objects do not form contiguous memory chunks
that can be released to the system (see Figure 3). Figure 10
shows that the heap characteristics of both settings are very
close to each other, despite the extra work done to restrict
the heap size in the background mode.

Compared to ART, the GC service reduces the total
garbage collections to 24 (50% fewer). Not only the col-
lection overhead is reduced, but the total heap space is also
reduced by 10%. The main reasons leading to these improve-
ments are: (i) The heap growth manager improves the resiz-
ing decisions by removing steps that reach a local maximum;

S
pa

ce
 (

M
B
)

2 8 14 21 27 36 46 56 70 89 103 122

Time (MB of allocations)

6

12

18

24

25

50

75

100

S
lo

ts
 (

K
)

Free-Slots FreeBytes Bgd-Space Fgd-Space

S
p
a
ce

 (
M

B
)

P
e
r-

si
ze

sl
o
ts

 (
%

)

2 8 14 21 27 36 46 56 70 89 103 122

Time (MB of allocations)

0
20
40
60
80

100

6

12

18

24

15

30

45

60

S
lo

ts
 (

K
)

Fgd-Space Bgd-Space FreeBytes Free-Slots
4096B 2048B 1024B 512B
256B 128B 64B 32B
16B 8B

S
pa

ce
 (

M
B
)

Pe
r-

si
ze

sl
ot

s
(%

)

2 8 14 21 27 36 46 56 70 89 103 122

Time (MB of allocations)

0
20
40
60
80

100

6

12

18

24

15

30

45

60

S
lo

ts
 (

K
)

Fgd-Space Bgd-Space FreeBytes Free-Slots
4096B 2048B 1024B 512B
256B 128B 64B 32B
16B 8B

Figure 10: Heap characteristics of Spotify vs. time measured
in bytes allocated: (1) the heap size in background and fore-
ground modes (Bgd/Fgd-Space) and the free slots volume,
(2) the count of free slots, and (3) the histogram of empty
slots grouped by their size.

and (ii) Executing major collections (young and old objects)
during the start-up phase reduces the fragments; hence, the
heap utilization is high and the total space occupied is small.
For Android ART, low heap utilization caused by fragmen-
tation occasionally falls below the trimming threshold.

6. Discussion
One objective of this work is to reduce the GC’s energy
consumption through direct coordination with DVFS. In the
future, we hope to extend the work to dynamically calculate
the optimum core frequency based on the observed workload
and memory allocation rates. This kind of optimization is
infeasible if each individual VM communicates with the
power manager directly to perform a collection cycle.

While we described the potential benefits of providing
GC as a service in mobile systems, there are few items that
bear further discussion: tuning of heuristics, limitations, and
the benefit of deploying a centralized VM service.
Heuristic Manager. Existing GC tuning has focused on
long running applications. For e.g., in server applications, a
VM instance is initialized occasionally and executes contin-
uously in a steady state after a sufficient warmup phase. On
the other hand, mobile app VMs are designed to be killed
and restarted frequently, increasing the per-app GC over-
head.

We introduce a design that takes advantage of global
statistics and improves the status quo. The GC service can
be extended through a plugin-based system that allows for
customization of its policies. Finally, the global service is
capable of providing several important and useful informa-
tion about the app memory usage and the user interactions
with the app. Most importantly, the service can predict usage
patterns (e.g., which apps may be used in a certain context).
Limitations. The GC service maps the heap into its ad-
dress space. When the client exits, the GC service unmaps
the heap. When the mapping fails, the service removes ex-
isting mapped heaps based on LRU. They will be re-mapped
when they are used again. We consider another approach in
which the client heap is directly added to the page table of
the server process without calling map-unmap. This can in-
crease the performance when a non existing VM needs to be
added. The integration with the memory manager can im-
prove the GC service performance. For example, replacing
mmap with an efficient system call that directly inserts the
client heap in the server page table will cut the overhead of
sharing the heap with the server.

7. Related Work
Energy and thermal engines, such as DVFS, are invisible to
user level developers. Several fine-grained profile tools [12,
47, 49, 54] show that apps still have room for significant
improvements by reducing idle time and power leaks caused
by inefficient software subcomponents [5, 18, 49, 50]. This
knowledge fueled the interest in tuning the performance and
energy by direct coordination of the application layer and the
power managers [23, 34, 37, 40].

GC costs for restricted memory environments have been
studied [16, 17, 32], but the precise relationship between
the GC tradeoffs and energy consumption and illuminat-

ing the way GC is affected by the system layers were be-
yond these studies. Recently, the impact of memory man-
agement on modern mobile devices has been redefined on
(i) the page-level [41], and (ii) the managed heap by the VM
runtime [34].

Efforts to efficient management of independent Java VM
heaps led to dynamic allocation of resources shared between
the running virtual machines [13, 14, 45]. These studies dif-
fer from our study in that (i) our system focuses on a re-
stricted mobile platform that hosts dozens of parallel vir-
tual machines, (ii) we evaluate the GC as perceived glob-
ally on the system profiler, and (iii) the GC service performs
GC phases on all virtual machines. Our work is the first to
present a runtime service on mobile platforms that can man-
age the heap of all running VMs while keeping each instance
in its own process, which is different from other approaches
like MVM [21, 60].

8. Conclusion
Mobile devices pose novel challenges to system designers,
because they juggle access to limited resources like battery
usage against app performance and responsiveness to user
actions. The Android system is running dozens of concurrent
VMs, each running an app on a single device in a constrained
environment. Unfortunately, the mobile system so far treats
each VM as a monolithic instance.

We have introduced a VM architecture that addresses ma-
jor resource bottlenecks (memory and energy) by presenting
a central GC service that evaluates GC decisions across all
running VMs and optimizes according to global heuristics.
The GC service has the following benefits: (i) it reduces the
cost of GC by tuning GC scheduling decisions and coordi-
nating with the power manager, (ii) apps run in their own
processes, ensuring separation between processes, (iii) it
eliminates sparse heaps, releasing more pages back to the
system, (iv) it performs opportunistic compaction and trim-
ming on sparse heaps, reducing the total overhead needed
to release memory from idle apps, (v) it reduces the number
of processes killed by the system LMK by returning more
pages, and (vi) it saves device resources during memory re-
cycling.

We believe that centrally managed VM services on a mo-
bile system will open up other research topics such as code
optimization. Our central service has the power to remove
redundancy and conflicting local heuristics, replacing them
with a globally integrated alternative.

Acknowledgments
This work has been supported by Qualcomm and the Na-
tional Science Foundation under grants number CNS-1161237
and CCF-1408896.

References
[1] ACS714: Hall Effect-Based Linear Current Sensor. Allegro

MicroSystems, LLC. URL
http://www.pololu.com/product/1185.

[2] AndroidSVG. AndroidSVG — SVG rendering library for
Android, 2015. URL
http://bigbadaboom.github.io/androidsvg.

[3] AppBrain Android market. AppTornado GmbH, 2016. URL
http://www.appbrain.com/.

[4] AVG Android App performance report Q3. AVG. Now, 2015.
URL http://now.avg.com/
avg-android-app-performance-report-q3-2015/.

[5] N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy consumption in mobile phones: A
measurement study and implications for network
applications. In ACM SIGCOMM Conference on Internet
Measurement Conference, IMC’09, pages 280–293, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-771-4.
doi: 10.1145/1644893.1644927.

[6] A. Bendersky and E. Petrank. Space overhead bounds for
dynamic memory management with partial compaction.
ACM Transactions on Programming Languages and Systems,
34(3):13:1–13:43, Nov. 2012.
doi: 10.1145/2362389.2362392.

[7] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. In
The Joint International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS
’04/Performance ’04, pages 25–36, New York, NY, USA,
2004. ACM. ISBN 1-58113-873-3.
doi: 10.1145/1005686.1005693.

[8] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis.
In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
169–190, Portland, Oregon, Oct. 2006.
doi: 10.1145/1167473.1167488.

[9] S. Blagodurov, S. Zhuravlev, and A. Fedorova.
Contention-aware scheduling on multicore systems. ACM
Transactions on Computer Systems, 28(4):8:1–8:45, Dec.
2010. ISSN 0734-2071. doi: 10.1145/1880018.1880019.

[10] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling
garbage collection and heap growth to reduce the execution
time of java applications. ACM Transactions on
Programming Languages and Systems, 28(5):908–941, Sept.
2006. doi: 10.1145/1152649.1152652.

[11] D. Brodowski. CPU frequency and voltage scaling code in
the Linux kernel. URL https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt.

[12] N. Brouwers, M. Zuniga, and K. Langendoen. Neat: A novel
energy analysis toolkit for free-roaming smartphones. In
ACM Conference on Embedded Network Sensor Systems,

SenSys’14, pages 16–30, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3143-2. doi: 10.1145/2668332.2668337.

[13] C. Cameron, J. Singer, and D. Vengerov. The judgment of
Forseti: Economic utility for dynamic heap sizing of multiple
runtimes. In ACM SIGPLAN International Symposium on
Memory Management, pages 143–156, Portland, Oregon,
June 2015. doi: 10.1145/2754169.2754180.

[14] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The
yin and yang of power and performance for asymmetric
hardware and managed software. In International Symposium
on Computer Architecture, pages 225–236, Portland, Oregon,
June 2012. doi: 10.1109/ISCA.2012.6237020.

[15] A. Carroll and G. Heiser. Unifying DVFS and offlining in
mobile multicores. In IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 287–296,
Berlin, Germany, Apr. 2014.
doi: 10.1109/RTAS.2014.6926010.

[16] G. Chen, M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and
M. Wolczko. Adaptive garbage collection for
battery-operated environments. In USENIX Java Virtual
Machine Research and Technology Symposium, pages 1–12,
San Francisco, California, Aug. 2002. URL
https://www.usenix.org/legacy/event/jvm02/chen_g.html.

[17] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J.
Irwin, and M. Wolczko. Tuning garbage collection for
reducing memory system energy in an embedded Java
environment. ACM Transactions on Embedded Computing
Systems, 1(1):27–55, Nov. 2002.
doi: 10.1145/581888.581892.

[18] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and
R. Vannithamby. Smartphone background activities in the
wild: Origin, energy drain, and optimization. In International
Conference on Mobile Computing and Networking,
MobiCom’15, pages 40–52, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3619-2.
doi: 10.1145/2789168.2790107.

[19] C. J. Cheney. A nonrecursive list compacting algorithm.
Commun. ACM, 13(11):677–678, Nov. 1970.
doi: 10.1145/362790.362798.

[20] P. Cheng and G. E. Blelloch. A parallel, real-time garbage
collector. In ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages
125–136, Snowbird, Utah, June 2001.
doi: 10.1145/378795.378823.

[21] G. Czajkowski and L. Daynés. Multitasking without
compromise: A virtual machine evolution. In ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 125–138,
Tampa, Florida, 2001. doi: 10.1145/504282.504292.

[22] F. M. David, J. C. Carlyle, and R. H. Campbell. Context
switch overheads for Linux on ARM platforms. In Workshop
on Experimental Computer Science, ExpCS’07, San Diego,
California, 2007. doi: 10.1145/1281700.1281703.

[23] U. Degenbaev, J. Eisinger, M. Ernst, R. McIlroy, and
H. Payer. Idle time garbage collection scheduling. In ACM
SIGPLAN International Conference on Programming
Language Design and Implementation, pages 570–583, San

http://www.pololu.com/product/1185
http://bigbadaboom.github.io/androidsvg
http://www.appbrain.com/
http://now.avg.com/avg-android-app-performance-report-q3-2015/
http://now.avg.com/avg-android-app-performance-report-q3-2015/
http://dx.doi.org/10.1145/1644893.1644927
http://dx.doi.org/10.1145/2362389.2362392
http://dx.doi.org/10.1145/1005686.1005693
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1880018.1880019
http://dx.doi.org/10.1145/1152649.1152652
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://dx.doi.org/10.1145/2668332.2668337
http://dx.doi.org/10.1145/2754169.2754180
http://dx.doi.org/10.1109/ISCA.2012.6237020
http://dx.doi.org/10.1109/RTAS.2014.6926010
https://www.usenix.org/legacy/event/jvm02/chen_g.html
http://dx.doi.org/10.1145/581888.581892
http://dx.doi.org/10.1145/2789168.2790107
http://dx.doi.org/10.1145/362790.362798
http://dx.doi.org/10.1145/378795.378823
http://dx.doi.org/10.1145/504282.504292
http://dx.doi.org/10.1145/1281700.1281703

Jose, California, 2016. ISBN 978-1-4503-4261-2.
doi: 10.1145/2908080.2908106.

[24] R. Efron. Conservation of temporal information by
perceptual systems. Perception & Psychophysics, 14(3):
518–530, Oct. 1973. doi: 10.3758/BF03211193.

[25] Taming the OOM killer. Eklektix, Inc., 2009. URL
http://lwn.net/Articles/317814/.

[26] H. Franke and R. Russell. Fuss, futexes and furwocks: Fast
userlevel locking in Linux. In Ottawa Linux Symposium,
pages 479–495, Ottawa, Canada, June 2002. URL http:
//www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf.

[27] AOSP issue tracker, 98332: Low memory killer is extremely
aggressive. Google Inc., 2015. URL
https://code.google.com/p/android/issues/detail?id=98332.

[28] Android ART and Dalvik. Google Inc., 2015. URL
https://source.android.com/devices/tech/dalvik/art.html.

[29] monkeyrunner API. Google Inc., 2015. URL http://developer.
android.com/tools/help/monkeyrunner_concepts.html.

[30] Android Processes and Threads. Google Inc., 2016. URL
https://developer.android.com/guide/components/
processes-and-threads.html.

[31] Android Open Source Project. Google Inc., 2016. URL
http://source.android.com.

[32] P. Griffin, W. Srisa-an, and J. M. Chang. An energy efficient
garbage collector for Java embedded devices. In ACM
SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, pages 230–238, Chicago,
Illinois, June 2005. doi: 10.1145/1065910.1065943.

[33] X. Guan, W. Srisa-an, and C. Jia. Investigating the effects of
using different nursery sizing policies on performance. In
ACM SIGPLAN International Symposium on Memory
Management, ISMM’09, pages 59–68, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-347-1.
doi: 10.1145/1542431.1542441.

[34] A. Hussein, A. L. Hosking, M. Payer, and C. A. Vick. Don’t
race the memory bus: Taming the GC leadfoot. In ACM
SIGPLAN International Symposium on Memory
Management, pages 15–27, Portland, Oregon, 2015.
doi: 10.1145/2754169.2754182.

[35] A. Iyer and D. Marculescu. Power efficiency of voltage
scaling in multiple clock, multiple voltage cores. In
IEEE/ACM International Conference on Computer-Aided
Design, pages 379–386, San Jose, California, Nov. 2002.
doi: 10.1145/774572.774629.

[36] N. Jacek, M.-C. Chiu, B. Marlin, and E. Moss. Assessing the
limits of program-specific garbage collection performance.
In ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages
584–598, Santa Barbara, California, June 2016.
doi: 10.1145/2908080.2908120.

[37] M. R. Jantz, F. J. Robinson, P. A. Kulkarni, and K. A. Doshi.
Cross-layer memory management for managed language
applications. In ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 488–504, Pittsburgh, Pennsylvania, Oct.
2015. doi: 10.1145/2814270.2814322.

[38] JSR 121: Application Isolation API Specification. Java
Community Process. URL
https://jcp.org/en/jsr/detail?id=121.

[39] R. Jones, A. Hosking, and E. Moss. The Garbage Collection
Handbook: The Art of Automatic Memory Management.
Chapman & Hall/CRC Press, 2011.

[40] M. Kambadur and M. A. Kim. An experimental survey of
energy management across the stack. In ACM SIGPLAN
International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 329–344,
Portland, Oregon, Oct. 2014.
doi: 10.1145/2660193.2660196.

[41] S.-H. Kim, S. Kwon, J.-S. Kim, and J. Jeong. Controlling
physical memory fragmentation in mobile systems. In ACM
SIGPLAN International Symposium on Memory
Management, pages 1–14, Portland, Oregon, June 2015.
doi: 10.1145/2754169.2754179.

[42] P. Lengauer and H. Mössenböck. The taming of the shrew:
Increasing performance by automatic parameter tuning for
Java garbage collectors. In ACM/SPEC International
Conference on Performance Engineering, pages 111–122,
Dublin, Ireland, 2014. ISBN 978-1-4503-2733-6.
doi: 10.1145/2568088.2568091.

[43] C. Li, C. Ding, and K. Shen. Quantifying the cost of context
switch. In Workshop on Experimental Computer Science,
ExpCS’07, San Diego, California, 2007.
doi: 10.1145/1281700.1281702.

[44] H. Lieberman and C. E. Hewitt. A real-time garbage
collector based on the lifetimes of objects. Commun. ACM,
26(6):419–429, June 1983. doi: 10.1145/358141.358147.

[45] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz.
Taurus: A holistic language runtime system for coordinating
distributed managed-language applications. In ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
457–471, Atlanta, Georgia, Apr. 2016.
doi: 10.1145/2872362.2872386.

[46] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony,
and R. Rajkumar. Critical power slope: Understanding the
runtime effects of frequency scaling. In International
Conference on Supercomputing, pages 35–44, New York,
New York, June 2002. doi: 10.1145/514191.514200.

[47] Monsoon Power Monitors. Monsoon Solutions Inc., 2016.
URL
https://www.msoon.com/LabEquipment/PowerMonitor/.

[48] NI. NI USB-6008/6009 user guide and specifications, Feb.
2012. URL http://www.ni.com/pdf/manuals/371303m.pdf.

[49] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang.
Fine-grained power modeling for smartphones using system
call tracing. In ACM European Conference on Computer
Systems, pages 153–168, Salzburg, Austria, Apr. 2011.
doi: 10.1145/1966445.1966460.

[50] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy
spent inside my app?: Fine grained energy accounting on
smartphones with eprof. In ACM European Conference on

http://dx.doi.org/10.1145/2908080.2908106
http://dx.doi.org/10.3758/BF03211193
http://lwn.net/Articles/317814/
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://code.google.com/p/android/issues/detail?id=98332
https://source.android.com/devices/tech/dalvik/art.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/components/processes-and-threads.html
http://source.android.com
http://dx.doi.org/10.1145/1065910.1065943
http://dx.doi.org/10.1145/1542431.1542441
http://dx.doi.org/10.1145/2754169.2754182
http://dx.doi.org/10.1145/774572.774629
http://dx.doi.org/10.1145/2908080.2908120
http://dx.doi.org/10.1145/2814270.2814322
https://jcp.org/en/jsr/detail?id=121
http://dx.doi.org/10.1145/2660193.2660196
http://dx.doi.org/10.1145/2754169.2754179
http://dx.doi.org/10.1145/2568088.2568091
http://dx.doi.org/10.1145/1281700.1281702
http://dx.doi.org/10.1145/358141.358147
http://dx.doi.org/10.1145/2872362.2872386
http://dx.doi.org/10.1145/514191.514200
https://www.msoon.com/LabEquipment/PowerMonitor/
http://www.ni.com/pdf/manuals/371303m.pdf
http://dx.doi.org/10.1145/1966445.1966460

Computer Systems, pages 29–42, Bern, Switzerland, Apr.
2012. doi: 10.1145/2168836.2168841.

[51] T. Printezis. On measuring garbage collection
responsiveness. Science of Computer Programming, 62(2):
164–183, Oct. 2006. doi: 10.1016/j.scico.2006.02.004.

[52] J. M. Robson. Worst case fragmentation of first fit and best
fit storage allocation strategies. The Computer Journal, 20
(3):242–244, Aug. 1977.

[53] J. B. Sartor and L. Eeckhout. Exploring multi-threaded Java
application performance on multicore hardware. In ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 281–296,
Tucson, Arizona, Oct. 2012. doi: 10.1145/2384616.2384638.

[54] A. Schulman, T. Schmid, P. Dutta, and N. Spring. Demo:
Phone Power Monitoring with Battor, 2011. URL
http://www.cs.umd.edu/~schulman/battor.html.

[55] J. Singer, G. Brown, I. Watson, and J. Cavazos. Intelligent
selection of application-specific garbage collectors. In ACM
SIGPLAN International Symposium on Memory
Management, pages 91–102, Montréal, Canada, Oct. 2007.
doi: 10.1145/1296907.1296920.

[56] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages
157–167, Pittsburgh, Pennsylvania, Apr. 1984.
doi: 10.1145/800020.808261.

[57] D. R. White, J. Singer, J. M. Aitken, and R. E. Jones. Control
theory for principled heap sizing. In ACM SIGPLAN

International Symposium on Memory Management, pages
27–38, Seattle, Washington, June 2013.
doi: 10.1145/2464157.2466481.

[58] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and
P. Stenström. The worst-case execution-time problem —
overview of methods and survey of tools. ACM Transactions
on Embedded Computing Systems, 7(3):36:1–36:53, May
2008. doi: 10.1145/1347375.1347389.

[59] F. Xian, W. Srisa-an, and H. Jiang. Contention-aware
scheduler: Unlocking execution parallelism in multithreaded
Java programs. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA’08, pages 163–180, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-215-3.
doi: 10.1145/1449764.1449778.

[60] Y. Yan, C. Chen, K. Dantu, S. Y. Ko, and L. Ziarek. Using a
multi-tasking VM for mobile applications. In International
Workshop on Mobile Computing Systems and Applications,
HotMobile’16, pages 93–98, St. Augustine, Florida, Feb.
2016. doi: 10.1145/2873587.2873596.

[61] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang. Accurate online power estimation and
automatic battery behavior based power model generation for
smartphones. In IEEE/ACM/IFIP international Conference
on Hardware/Software Codesign and System Synthesis,
CODES/ISSS’10, pages 105–114, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-905-3.
doi: 10.1145/1878961.1878982.

http://dx.doi.org/10.1145/2168836.2168841
http://dx.doi.org/10.1016/j.scico.2006.02.004
http://dx.doi.org/10.1145/2384616.2384638
http://www.cs.umd.edu/~schulman/battor.html
http://dx.doi.org/10.1145/1296907.1296920
http://dx.doi.org/10.1145/800020.808261
http://dx.doi.org/10.1145/2464157.2466481
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1449764.1449778
http://dx.doi.org/10.1145/2873587.2873596
http://dx.doi.org/10.1145/1878961.1878982

	Introduction
	Motivation
	Contributions

	Background
	Design and Architecture
	Global Collector and Energy Optimization
	Global GC Service vs. Global GC Policy
	Performance
	Design Considerations

	Implementation
	System Startup and IPC Support
	Client Memory Management
	Concurrent Mark Sweep
	Heap Size Management
	Extension: Compaction vs. Trimming

	Energy Optimization

	Experimental Results
	Methodology and Benchmarking
	Energy and Performance Evaluation
	Space Analysis

	Discussion
	Related Work
	Conclusion

